• Title/Summary/Keyword: Piezoelectric Sensors

Search Result 395, Processing Time 0.027 seconds

Preparation and Properties of PVDF Multilayer Film

  • Han, Fei-Fei;Son, Tea-Won
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.03a
    • /
    • pp.118-119
    • /
    • 2009
  • As the rapid development of the electronics, the demand for portable electronics and wireless sensors is growing faster, also with the increased needs of one material which can power it automatically, and then power the electrical devices. The piezoelectric effect of the PVDF material can be used for this. So in this paper, PVDF multilayer films were made for this aim. Make the PVDF / DMAc solution in the 10% concentration; use the spin coater technique to make films with the optimum process parameters: the spin rate is 1260rpm; the spin time is 70s; the dry temperature is 100$^{\circ}C$; the dry time is 30mins. And also, for obtaining the higher $\beta$-phase crystallinity, put the Ca(NH3)2.4H2O into the PVDF / DMAc solution system.

  • PDF

Piezo-driven inkjet printhead monitoring system (압전 잉크젯 헤드 모니터링 시스템)

  • Lee, Byeung-Leul;Kim, Sang-Il
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.124-129
    • /
    • 2010
  • For the industrial printing applications, the stability of the piezo-driven inkjet printhead is a major requirement. In this paper, we focused on the failure modes of the inkjet printhead and realized a method to detect and repair them at high speed. The printhead monitoring is performed by detecting the residual vibration of the actuating plate using the self- sensing capability of the piezoelectric material. To measure the channel acoustics and to identify the malfunctioning nozzle, we devised the bridge sensing circuitry and failure detection algorithm. The residual vibration signals can be affected by the boundary conditions of the channel acoustics, so it is possible to identify the failure causes by analyzing the monitoring signals. Therefore it is also possible to apply a proper restoring process to the defective printhead. The experimental results show that this method is effective in improving the reliability of the industrial printing.

A study on the Fabrication and characterization of temperature Sensor using surface acoustic wave (표면 탄성파를 이용한 온도센서의 제작 및 특성에 대한 연구)

  • Park Jae-Hong;Kim Jae-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.139-145
    • /
    • 2006
  • This paper presents the design and manufacturing of a sensor using SAW and delay line in order to measure temperature. SAW sensors having single and double electrodes are manufactured on the $128^{\circ}YX-LiNbO_3$ substrate, and its process is addressed. Before manufacturing, the device is simulated using a commercial finite element program. The frequency responses of the saw sensor on the temperature change is measured. Since the center frequency on the temperature change from $-30^{\circ}C$ to $80^{\circ}C$ is linearly changed, the saw sensor is applicable to measure the temperature change or strain variation.

Fabrication of a buckling micro MCA valve (버클링 마이크로 적층형 압전밸브의 제작)

  • Lee, Jong-Hwa;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a buckling microvalve using a MCA (multilayer ceramic actuator). The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed microvalve using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a small piezoelectric actuator. The flow rate of the fabricated MCA valve was 0-8.13 ml/min at the applied pressure of 0-50 kPa. Maximum non-linearity was 2.24 % FS at a duty cycle of 50 %. The maximum pressure was 230 kPa and the leak rate was $3.03{\times}10^{-8}\;Pa{\cdot}m^{3}/cm^{2}$ at a supply voltage of 100 V.

Real Time Driver's Respiration Monitoring (실시간 운전자 호흡 모니터링)

  • Park, Jaehee;Kim, Jaewoo;Lee, Jae-Cheon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.142-147
    • /
    • 2014
  • Real time driver's respiration monitoring method for detecting driver's drowsiness is investigated. The sensor to obtain driver's respiration signal was a piezoelectric pressure sensor attached at the abdominal region of the seat belt. The resistance of the pressure sensor was changed according to the pressure applied to the seat belt due to the driver's respiration. Monitoring driver's respiration was carried out by driving on the virtual road in a driving simulator from Cheonan to Seoul and monitoring results were compared to the PELCLOS. Experiment results show that the driver's respiration signal can be used for detecting driver's drowsiness.

Development of electro-spray micro-thruster and measurement of nano-scale thrust (Electro-spray 마이크로 추진 장치 개발 및 나노 크기의 힘 측정)

  • Lee Young-Jong;Si Bui Quang Tran;Byun Do-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.45-48
    • /
    • 2007
  • Conventional force sensors such as piezoelectric sensor has limitations for measuring micro/nano-scale thrust. In this study we developed nano-scale measurement system using laser displacement sensor and cantilever. And electrospray microthruster was fabricated by using stainless capillary and extraction electrode, to generate nano-scale thrust. The measurement system can measure the around 90 nN thrust from this thruster. In addition, we designed and fabricated electrospray micro thruster based on PMMA(Polymethyl methacrylate), which has a nozzle protruded from the substrate.

  • PDF

Ionic Polymer Transducers in sensing: the streaming potential hypothesis

  • Weiland, Lisa Mauck;Akle, Barbar
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.211-223
    • /
    • 2010
  • Accurate sensing of mechanical strains in civil structures is critical for optimizing structure reliability and lifetime. For instance, combined with intelligent control systems, electromechanical sensor output feedback has the potential to be employed for nondestructive damage evaluation. Application of Ionic Polymer Transducers (IPTs) represents a relatively new sensing approach with more than an order of magnitude higher sensitivity than traditional piezoelectric sensors. The primary reason this sensor has not been widely used to date is an inadequate understanding of the physics responsible for IPT sensing. This paper presents models and experiments defending the hypothesis of a streaming potential sensing mechanism.

Surface Acoustic Waves Sensors for Wireless Measurement of Temperature (Surface Acoustic Wave를 이용한 무선 온도 센서 설계 및 구현)

  • Kim, Jaek-Won;Park, Joo-Yong;Kim, Kyung-Hwan;Yeo, Joon-Ho;Burm, Jin-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.469-470
    • /
    • 2006
  • Surface Acoustic Wave(SAW) devices can be used to as wireless sensor elements, called SAW transponders, for measuring shysical quantities such as temperature that do not need any power supply and may be accessed wirelessly. SAW devices were fabricated on Y-Z $LiNbO_3$ piezoelectric substrate with a good temperature coefficient property. The signal response of SAW sensor on the temperature change were compared. To measure the change of SAW velocity. Temperature changed form $20^{\circ}C$ to $400^{\circ}C$ was linearly changed, the SAW sensor is application to the temperature sensor.

  • PDF

Characteristics of polycrystalline 3C-SiC micro resonator (다결정 3C-SiC 마이크로 공진기의 특성)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.69-70
    • /
    • 2008
  • Micro resonators have been actively investigated for bio/chemical sensors and RF M/NEMS devices. Among various materials, SiC is a very promising material for micro/nano resonators since the ratio of its Young's modulus, E, to mass density, $\rho$, is significantly higher than other semiconductor materials, such as, Si and GaAs. Polycrystalline 3C-SiC cantilever with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and its fundamental resonance was measured by a laser vibrometer in air and vacuum at room temperature, respectively. For the cantilever with $100{\mu}m$ length, $10{\mu}m$width and $1.3{\mu}m$ thickness, the fundamental frequency appeared at 147.2 kHz.

  • PDF

Design of Phase Tracking Feedback Compensator for Stabilization of Single Mode Fiber-Optic Mach-Zehnder Interferometer (단일모드 광섬유Mach-Zehnder 간섭계의 안정화를 위한 위상 추적 궤환 보상기의 설계)

  • 이기완;홍봉식
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.12
    • /
    • pp.2032-2038
    • /
    • 1989
  • Single mode optical fiber interferometeric sensors using phase tracking homodyne detection are typically susceptible to environmentally indured temperature fluctuations and other types of disturbances. A simple and effective phase tracking feedback electronic circuit for compensator is described to achieve stabilizing signal output, maximum sensitivity and linearity in the fiber optic Mach-Zehnder infterferometer in the presence of differential phase drift. The phase tracking range of the piezoelectric cyclinder in the reference arm is \ulcorner.7 \ulcornerad and the prabe mass about 1 gram in the sensing arm was used for measurements of the gravity acceleration.

  • PDF