• Title/Summary/Keyword: Piezoelectric Fiber

Search Result 143, Processing Time 0.018 seconds

Low Temperature Structural Tests of a Composite Wing with Room Temperature-Curing Adhesive Bond (상온접합 본딩이 있는 복합재 날개의 저온 구조시험)

  • Ha, Jae Seok;Park, Chan Yik;Lee, Kee Bhum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.928-935
    • /
    • 2015
  • This paper presents low temperature structural tests of a UAV wing which has room temperature-curing adhesive bond. The wing structure is made of carbon fiber reinforced composites, and the skins are bonded to the inner structures (such as ribs and spars) using room temperature-curing adhesive bond. Also, to verify damage tolerance design of the wing structure, barely visible impact damages are intentionally created in the critical areas. The attachment fittings of the wing are fixed in a specially designed chamber which can simulate the low temperature environments of the operating altitudes. The test load is applied by hydraulic actuators which are placed outside the chamber. The structural tests consist of strain survey tests and a durability test for 1-life fatigue load spectrum. During the tests, strains of major parts are measured by strain gauges and FBG sensors. The change of the initial impact damages is also monitored using piezoelectric sensors. The 1-life damage tolerance of the composite structure is verified by the structural tests under the simulated environments.

Manufacturing Method for Sensor-Structure Integrated Composite Structure (센서-구조 일체형 복합재료 구조물 제작 방법)

  • Han, Dae-Hyun;Kang, Lae-Hyong;Thayer, Jordan;Farrar, Charles
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.155-161
    • /
    • 2015
  • A composite structure was fabricated with embedded impact detection capabilities for applications in Structural Health Monitoring (SHM). By embedding sensor functionality in the composite, the structure can successfully perform impact localization in real time. Smart resin, composed of $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb(Zr,\;Ti)O_2$ (PNN-PZT) powder and epoxy resin with 1:30 wt%, was used instead of conventional epoxy resin in order to activate the sensor function in the composite structure. The embedded impact sensor in the composite was fabricated using Hand Lay-up and Vacuum Assisted Resin Transfer Molding(VARTM) methods to inject the smart resin into the glass-fiber fabric. The electrodes were fabricated using silver paste on both the upper and bottom sides of the specimen, then poling treatment was conducted to activate the sensor function using a high voltage amplifier at 4 kV/mm for 30 min at room temperature. The composite's piezoelectric sensitivity was measured to be 35.13 mV/N by comparing the impact force signals from an impact hammer with the corresponding output voltage from the sensor. Because impact sensor functionality was successfully embedded in the composite structure, various applications of this technique in the SHM industry are anticipated. In particular, impact localization on large-scale composite structures with complex geometries is feasible using this composite embedded impact sensor.

Fabrication of the photon scanning tunneling microscope with constant intensity mode (일정광량 방식의 광자주사현미경 제작)

  • Kim, Ji-Taek;Choi, Wan-Hae;Jo, Jae-Heung;Chang, Soo;Kim, Dal-Hyun;Koo, Ja-Yong;Chung, Seung-Tae
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.195-200
    • /
    • 1999
  • We made sharp optical fiber tips with less than 100 nm diameter by using the heating and pulling method with a good repetition and fabricated the photon scanning tunneling microscope (PSTM) using constant intensity mode. The 3-dimensional PZT (Piezoelctric transducer) scanner made of a long PZT tube is consisted of three divided parts, that is, a pair of $\pm$ x and a pair of $\pm$y scanning parts and a z scanning part for the fine approach and scanning. The scanning dimension is 1.43 $\mu\textrm{m}$$\times$1.76 $\mu\textrm{m}$. The height of a optical tip to maintain a constant height within $1/{\lambda}_0$ (${\lambda}_0$ is the incident wavelength) from surface of a specimen to a optical tip is controlled automatically by using the electric feedback circuit. The 3-dimensional shape of standing evanescent waves generated on the surface of a dove prism was measured successfully by using the constant intensity mode PSTM.

  • PDF