• Title/Summary/Keyword: Piezoelectric Control

Search Result 668, Processing Time 0.027 seconds

Optimal control and design of composite laminated piezoelectric plates

  • ALamir, ALhadi E.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1177-1202
    • /
    • 2015
  • The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process.

Characterization of Nanoscale Electroactive Polymers via Piezoelectric Force Microscopy

  • Lee, Su-Bong;Ji, Seungmuk;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.232.2-232.2
    • /
    • 2015
  • Piezoelectric force microscopy (PFM) is a powerful method to characterize inversed piezoelectric effects directly using conductive atomic force microscopy (AFM) tips. Piezoelectric domains respond to an applied AC voltage with a characteristic strain via a contact between the tip and the surface of piezoelectric material. Electroactive piezoelectric polymers are widely investigated due to their advantages such as flexibility, light weight, and microactuation enabling various device features. Although piezoelectric polymers are promising materials for wide applications, they have the primary issue that the piezoelectric coefficient is much lower than that of piezoelectric ceramics. Researchers are studying widely to enhance the piezoelectric coefficient of the materials including nanoscale fabrication and copolymerization with some materials. In this report, nanoscale electroactive polymers are prepared by the electrospinning method that provides advantages of direct poling, scalability, and easy control. The main parameters of the electrospinning process such as distance, bias voltage, viscosity of the solution, and elasticity affects the piezoelectric coefficient and the nanoscale structures which are related to the phase of piezoelectric polymers. The characterization of such electroactive polymers are conducted using piezoelectric force microscopy (PFM). Their morphologies are characterized by field emission-scanning electron microscope (FE-SEM) and the crystallinity of the polymer is determined by X-ray diffractometer.

  • PDF

Precise Position Control of Inchworm Using Robust Control Technique and Input Shaping (강인제어 기법과 입력성형법을 이용한 자벌레의 정밀 위치 제어)

  • Yang, Kwang-Yong;Hwang, Yun-Sik;Kim, Yeung-Shik;Kim, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.169-175
    • /
    • 2009
  • This paper presents motion control of the Inchworm composed of the piezoelectric actuators and mechanical elements. Piezoelectric actuator shows nonlinear response characteristics including hysteresis due to the ferroelectric characteristics. This paper proposes feedback control scheme to improve the ability of tracking response to complex input signal and suppress the phenomenon of hysteresis using the sliding mode control technique with the integrator. The sliding mode control system has the limit to minimize both the settle time and overshoot. For making up this limit, this paper also suggests input shaping technique suitable to the inchworm control system.

Modeling on Structural Control of a Laminated Composite Plate with Piezoelectric Sensor/Actuators (압전재료를 이용한 복합적층판의 구조제어에 관한 모델링)

  • 황우석;황운봉;한경섭;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • A finite element formulation of vibration control of a laminated plate with piezoelectric sensor/ actuators is presented. Classical lamination theory with the induced strain actuation and Hamilton's principle are used to formulate the equations of motion of the system. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The equations of motion and the total charge are discretized with 4 node, 12 degrees of freedom quadrilateral plate bending elements with one electrical degree of freedom. The mass and stiffness of the piezoelectric layer are introduced by treating them as another layer in laminated plate. Piezoelectric sensor/actuators are distributed, but discrete due to the geometry of electrodes. By defining an i.d. number of electrode for each element, modelling of electrodes with variable geometry can be achieved. The static response of a piezoelectric bimorph beam to electrical loading and sensor voltage to given displacement are calculated. For a laminated plate under the negative velocity feedback control, the direct time response by the Newmark-.betha. method and damped frequencies and modal damping ratios by modal state space analysis are derived.

Flutter Suppression of Cantilevered Plate Wing using Piezoelectric Materials

  • Makihara, Kanjuro;Onoda, Junjiro;Minesugi, Kenji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.70-85
    • /
    • 2006
  • The supersonic flutter suppression of a cantilevered plate wing is studied with the finite element method and the quasi-steady aerodynamic theory. We suppress wing flutter by using piezoelectric materials and electric devices. Two approaches to flutter suppression using piezoelectric materials are presented; an energy-recycling semi-active approach and a negative capacitance approach. To assess their flutter suppression performances, we simulate flutter dynamics of the plate wing to which piezoelectric patches are attached. The critical dynamic pressure drastically increases with our flutter control using a negative capacitor.

The Proposal of IEEE 1451.4 for Piezoelectric Actuator of 1 degree of Freedom (1자유도의 압전 엑추에이터를 위한 IEEE 1451.4 TEDS 제안)

  • Kim, Jeong-Do;Kim, Dong-Jin;Hong, Chul-Ho;Jung, Woo-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.1018-1024
    • /
    • 2007
  • It is important to define a standard method to store basic sensor information, such as the type and the structure for an piezoelectric actuator and there is no such method defined in the IEEE 1451.4 transducer electronic data sheet (TEDS) so far. The major challenge is to choose a suitable standard template that can be used with actuators for piezoelectric devices. In this paper, we propose a new template TEDS and the structure of interface for IEEE 1451.4 for piezoelectric actuators.

A Study on the Adaptive Piezoelectric Energy Harvesting (적응 제어기를 이용한 압전 소자로부터의 에너지 회수에 대한 연구)

  • Park Jong-Soo;Nam Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.64-71
    • /
    • 2006
  • A target of this paper is to study on the usefulness of the adaptive piezoelectric energy harvesting device as a wireless electrical power supply when it is driven by mechanical vibrations of low frequency. For this purpose, an adaptive control technique and a step-down converter are used. A THUNDER series a piezoelectric material (TH7-R), which has been developed by a NASA engineer is selected for this study. In order to provide a mechanical energy to the piezoelectric material, a mechanical motion vibrator is designed. The adaptive controller is implemented using a dSPACE DS1104 controller board. The do-dc converter with an adaptive control technique harvests energy at over five times the rate of direct charging without a converter.

Fabrication of High-Performance Piezoelectric Thick Films on Si for a Micropump of the Ink-jet Printer Head

  • Kim, Jong-Min;Park, Hyeong-Sik;Kim, Jwa-Yeon;Yun, Eui-Jung;Kim, Jeong-Seog;Cheon, Chae-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.345-348
    • /
    • 2006
  • The piezoelectric thick films were fabricated on silicon substrates by screen printing method. By developing a low-temperature sinterable piezoelectric composition and a new poling technique, we fabricated the high-performance piezoelectric thick films on silicon which can be applied for piezoelectric MEMS applications such as micropumps of the ink jet printer heads.

  • PDF

A Study on the Driven and Analysis of T5 Application Circuits using a Characteristics of Piezoelectric Transformer (압전 변압기 특성을 이용한 T5급 응용회로 동작 및 해석에 관한 연구)

  • Lee, Hae-Chun;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.113-118
    • /
    • 2010
  • In This Paper, at the PSPICE model is presented by Piezoelectric Transformer and CCFL and equivalent circuit of fluorescent light. Highly effective fluorescent light release for next generation is developed for 35W supremacy model three wave length T5 fluorescent lamps. Lighting a candle experiment of T5 fluorescent lamps is carried out by employing Piezoelectric Transformer power-factor improvement circuit and inverter. PLL method is used for supplying a correct frequency of Piezoelectric Transformer operating.

Precision Position Control of Piezoelectric Actuator Using Feedforward Hysteresis Compensation and Neural Network (히스테리시스 앞먹임과 신경회로망을 이용한 압전 구동기의 정밀 위치제어)

  • Kim HyoungSeog;Lee Soo Hee;Ahn KyungKwan;Lee ByungRyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.94-101
    • /
    • 2005
  • This work proposes a new method for describing the hysteresis non-linearity of a piezoelectric actuator. The hysteresis behaviour of piezoelectric actuators, including the minor loop trajectory, are modeled by geometrical relationship between a reference major loop and its minor loops. This hysteresis model is transformed into inverse hysteresis model in order to output compensated voltage with regard to the given input displacement. A feedforward neural network, which is trained by a feedback PID control module, is incorporated to the inverse hysteresis model to compensate unknown dynamics of the piezoelectric system. To show the feasibility of the proposed feedforward-feedback controller, some experiments have been carried out and the tracking performance was compared to that of simple PTD controller.