• 제목/요약/키워드: Piezoelectric Actuators

Search Result 401, Processing Time 0.027 seconds

Wirelessly Driven Cellulose Electro-Active Paper Actuator: Application Research (원격구동 셀룰로오스 종이 작동기의 응용연구)

  • Kim, Jae-Hwan;Yang, Sang-Yeol;Jang, Sang-Dong;Ko, Hyun-U;Mun, Sung-Cheol;Kim, Dong-Gu;Kang, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.539-543
    • /
    • 2012
  • Cellulose Electro-Active Paper (EAPap) is attractive as a biomimetic actuator because of its merits: it is lightweight, operates in dry conditions, has a large displacement output, has a low actuation voltage, and has low power consumption. Cellulose is regenerated so as to align its microfibrils, which results in a piezoelectric paper. When chemically bonded and mixed with carbon nanotubes, titanium oxide, zinc oxide, tin oxides, the cellulose EAPap can be used as a hybrid nanocomposite that has versatile properties and that can meet the requirements of many application devices. This paper presents trends in recent research on the cellulose EAPap, mainly on material preparation and its use in devices, including biosensors, chemical sensors, flexible transistors, and actuators. This paper also explains wirelessly driving technology for the cellulose EAPap, which is attractive for use in biomimetic robotics and micro-aerial vehicles.

Shape Control using Piezoelectric Materials and Shape Memory Alloy (압전재료와 형상기억합금을 이용한 형상제어)

  • Park, H.C.;Hwang, W.;Oh, J.T.;Bae, S.M.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1311-1320
    • /
    • 2000
  • In this study, shape memory alloy(SMA) wires and piezoceramic actuators(PZT's) are employed in order to generate higher modes on the beam deformations. Compressive force is generated and applied to the beam by the pre-strained SMA wires attached at both ends of the beam. PZT's apply concentrated moments to several locations on the beam. Combinations of the compressive force and concentrated moments are investigated in order to understand the higher-mode deformation of beams. The first desired mode shape is obtained by controlling the temperature of the SMA wires. The first and third mode shapes are performed experimentally by heating SMA wires up to phase transformation temperature. The adaptive wing is defined as a wing whose shape parameters such as the camber, wing twist and thickness can be varied in order to change the wing shape for various flight conditions. In this research, control of the camber has been studied. The wing model consists of three plates and many ribs. Two of the plates are placed parallel to each other and they are clamped at one edge. Third plate connects the other edges of the parallel plates together. Each rib is made of SMA wire and connected to the parallel plates. It generates concentrated force and applies to the plates in oblique directions. The PZT's are bonded onto the plates and exert concentrated moments upon the plate at several locations. The object of this research is to generate various shape of wing by combining the concentrated forces and moments.

  • PDF

Vibration Control of a Beam with a Tip Mass using a Lightweight Piezo-composite Actuator (경량 압전 복합재료 작동기를 이용한 끝단 질량이 부착된 보의 진동 제어)

  • Martua, Landong;Park, Hoon-Cheol;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.218-224
    • /
    • 2007
  • Although piezoelectric materials such as PZT have been widely used as actuators in the field of active vibration suppression, the use of bare PZT as an actuator may cause some drawbacks such as critical breaks in the installation process, short circuits in the host material and low fatigue performance. The LIPCA-C2 (lightweight piezocomposite actuator) was developed to alleviate these problems. We implemented the LIPCA as an actuator to suppress the vibration of an aluminum cantilever beam with a tip mass. In our test, we used positive position feedback control algorithm. The filter frequency for this type of feedback should be tuned to the natural frequency of the target mode. The first three experimental natural frequencies of the aluminum cantilever beam agree well with the results of finite element analysis. The effectiveness of using the LIPCA as an actuator in active vibration suppression was investigated with respect to the time and frequency domains, and the experimental results show that LIPCAs with PPF control can significantly reduce the amplitude of forced vibrations and the settling time of free vibrations. For a case study, the forced vibration control of several beams with different thicknesses were performed.

A Pilot Study of Implementing Bender Element to In-situ Civil Engineering Measurement (현장 토목 계측을 위한 벤더 엘리멘트의 적용성 연구)

  • Jung Jae-Woo;Jang In-Sung;Mok Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.215-223
    • /
    • 2005
  • Piezo-ceramics are special materials which transform energy from mechanical to electrical forms and vice versa. Bender elements are composite materials consisting of thin piezo-ceramics and elastic shims, and are widely used as actuators and transducers in the field of electronics, robotics, autos and mechatronics utilizing the effectiveness of energy transformation capability. In geotechnical engineering, commercial bender elements are used in laboratory as source and receiver in the measurements of soil stiffness. The elements were built by using various metal shims sandwiched between piezo-ceramics and coating over the composite in the research. A pair of elements were buried in a concrete block and used as source and receiver to measure the stiffness of the concrete. The test results were verified by comparing with the resonant column testing results. In a preliminary stage of the development of an in-situ seismic testing equipment using bender elements for soft clay materials, shear waves were generated and measured by burying the elements in the barrel of kaolinite and water mixture. The measured shear wave signals were so distinct for the first-arrival pick that applicability of the elements in the field measurements could be very promising.

Piezo-activated guided wave propagation and interaction with damage in tubular structures

  • Lu, Ye;Ye, Lin;Wang, Dong;Zhou, Limin;Cheng, Li
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.835-849
    • /
    • 2010
  • This study investigated propagation characteristics of piezo-activated guided waves in an aluminium rectangular-section tube for the purpose of damage identification. Changes in propagating velocity and amplitude of the first wave packet in acquired signals were observed in the frequency range from 50 to 250 kHz. The difference in guided wave propagation between rectangular- and circular-section tubes was examined using finite element simulation, demonstrating a great challenge in interpretation of guided wave signals in rectangular-section tubes. An active sensor network, consisting of nine PZT elements bonded on different surfaces of the tube, was configured to collect the wave signals scattered from through-thickness holes of different diameters. It was found that guided waves were capable of propagating across the sharp tube curvatures while retaining sensitivity to damage, even that not located on the surfaces where actuators/sensors were attached. Signal correlation between the intact and damaged structures was evaluated with the assistance of a concept of digital damage fingerprints (DDFs). The probability of the presence of damage on the unfolded tube surface was thus obtained, by which means the position of damage was identified with good accuracy.

Development of Tactile Display for the Blind in Japan (일본의 시각장애인을 위한 촉각디스플레이 개발)

  • Han, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • Research and development of Assistive Technology (AT) for blind people is primarily focused on assisting mobility and improving access to information. Some particularly useful devices for aiding access to information and communication are DAISY players used with talking books, screen readers for reading screens, video magnifiers to aid low vision, Braille displays, and Braille PDAs. These essential devices have been successfully commercialized and have assisted many visually impaired people. Assistive technology devices for visually impaired people are called sensory substitution devices, because these devices substitute tactile or auditory functions for visual functions. The tactile interfaces of sensory substitution devices such as Braille displays and Braille PDAs have a bimorph type of piezoelectric actuator that forms a Braille (pin) of the Braille cells by moving up and down. KGS Corporation of Japan has more than 80% share of the worldwide market for these Braille cell actuators. Commercializing it for the first time in the world. This paper reviews the various endeavors in Japan in the research and development of tactile displays, such as Braille displays and Braille PDAs. Furthermore, it discusses sensory substitution devices that use tactile displays, focusing especially on the rotating Braille display we have developed.

Characterization of Thermo-optical Properties of Ferroelectric P(VDF-TrFE) Copolymer Using Febry-Perot Interferometer (Febry-Perot 간섭계를 이용한 강유전 P(VDF-TrFE) 폴리머 열광학 특성평가)

  • Song, Hyun-Cheol;Kim, Jin-Sang;Yoon, Seok-Jin;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.228-231
    • /
    • 2009
  • Phase transition in ferroelectric polymer is very interesting behavior and has been widely studied for real device applications, such as actuators and sensors. Through the phase transition, there is structural change resulting in the change of electrical and optical properties. In this study, we fabricated the Febry-Perot interferometer with the thin film of ferroelectric P(VDF-TrFE) 50/50 mol% copolymer, and thermo-optical properties were investigated. The effective thermo-optical coefficient of P(VDF-TrFE) was obtained as $2.3{\sim}3.8{\times}10^{-4}/K$ in the ferroelectric temperature region ($45^{\circ}C{\sim}65^{\circ}C$) and $6.0{\times}10^{-4}/K$ in the phase transition temperature region ($65^{\circ}C{\sim}85^{\circ}C$), which is a larger than optical silica-fiber and PMMA. The resonance transmission peak of P(VDF-TrFE) with the variation of temperature showed hysteretic variation and the phase transition temperature of the polymer in heating condition was higher than in the cooling condition. The elimination of the hysteretic phase transition of P(VDF-TrFE) is necessary for practical applications of optical devices.

Structural, Dielectric and Field-Induced Strain Properties of La-Modified Bi1/2Na1/2TiO3-BaTiO3-SrZrO3 Ceramics

  • Hussain, Ali;Maqbool, Adnan;Malik, Rizwan Ahmed;Zaman, Arif;Lee, Jae Hong;Song, Tae Kwon;Lee, Jae Hyun;Kim, Won Jeong;Kim, Myong Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.566-570
    • /
    • 2015
  • $Bi_{0.5}Na_{0.5}TiO_3$ (BNT) based ceramics are considered potential lead-free alternatives for $Pb(Zr,Ti)O_3$(PZT) based ceramics in various applications such as sensors, actuators and transducers. However, BNT-based ceramics have lower electromechanical performance as compared with PZT based ceramics. Therefore, in this work, lead-free bulk $0.99[(Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}]_{(1-x)}La_xTiO_3-0.01SrZO_3$ (BNBTLax-SZ, with x = 0, 0.01, 0.02) ceramics were synthesized by a conventional solid state reaction The crystal structure, dielectric response, degree of diffuseness and electric-field-induced strain properties were investigated as a function of different La concentrations. All samples were crystallized into a single phase perovskite structure. The temperature dependent dielectric response of La-modified BNBT-SZ ceramics showed lower dielectric response and improved field-induced strain response. The field induced strain increased from 0.17%_for pure BNBT-SZ to 0.38 % for 1 mol.% La-modified BNBT-SZ ceramics at an applied electric field of 6 kV/mm. These results show that La-modified BNBT-SZ ceramic system is expected to be a new candidate material for lead-free electronic devices.

Piezo-electrically Actuated Micro Corner Cube Retroreflector (CCR) for Free-space Optical Communication Applications

  • Lee, Duk-Hyun;Park, Jae-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.337-341
    • /
    • 2010
  • In this paper, an extremely low voltage operated micro corner cube retroreflector (CCR) was fabricated for free-space optical communication applications by using bulk silicon micromachining technologies. The CCR was comprised of an orthogonal vertical mirror and a horizontal actuated mirror. For low voltage operation, the horizontal actuated mirror was designed with two PZT cantilever actuators, torsional bars, hinges, and a mirror plate with a size of $400{\mu}m{\times}400{\mu}m$. In particular, the torsional bars and hinges were carefully simulated and designed to secure the flatness of the mirror plate by using a finite element method (FEM) simulator. The measured tilting angle was approximately $2^{\circ}$ at the applied voltage of 5 V. An orthogonal vertical mirror with an extremely smooth surface texture was fabricated using KOH wet etching and a double-SOI (silicon-on-insulator) wafer with a (110) silicon wafer. The fabricated orthogonal vertical mirror was comprised of four pairs of two mutually orthogonal flat mirrors with $400{\mu}m4 (length) $\times400{\mu}m$ (height) $\times30{\mu}m$ (thickness). The cross angles and surface roughness of the orthogonal vertical mirror were orthogonal, almost $90^{\circ}$ and 3.523 nm rms, respectively. The proposed CCR was completed by combining the orthogonal vertical and horizontal actuated mirrors. Data transmission and modulation at a frequency of 10 Hz was successfully demonstrated using the fabricated CCR at a distance of approximately 50 cm.

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.