• 제목/요약/키워드: Piezoactuator

검색결과 25건 처리시간 0.019초

High-Q $Yba_2Cu_3O_{7-\delta}$ 고온초전도체 공진기를 이용한 주파수 튜닝이 가능한 고성능 발진기 제작 (Fabrication of a High-performance Oscillator with a Tunable High-Q HTS $YBa_2Cu_3O_{7-\delta}$ Resonator)

  • 양우일;이재훈;허정;이상영
    • 대한전자공학회논문지TC
    • /
    • 제42권7호
    • /
    • pp.63-70
    • /
    • 2005
  • 위상잡음(phase noise)이 작은 발진기(oscillator)는 주파수 대역의 효율적 활용과 고속의 데이터 전송을 가능하게 하는 통신 시스템의 구축과 Doppler 효과를 이용하는 RADAR의 제작을 위한 핵심소자로서 발진기의 위상잡음은 공진부의 loaded Q($Q_{L}$)값이 클수록 작아진다. 본 논문에서는 고온초전도 $YBa_2Cu_3O_{7-\delta}$(YBCO) 박막을 사용하여 $TE_{011}$ 모드 고온초전도 YBCO-루타일 공진기를 제작하고 이 공진기가 공진단으로 사용된 발진기 특성의 시뮬레이션, 발진기 제작 및 위상잡음 측정 연구를 수행하였다. 23.5 K 및 $TE_{01\delta}$ 모드 공진주파수인 8.545 GHz에서 $Q_{L}$=180000 인 고온초전도 YBCO-루타일 공진기를 사용하여 제작된 발진기의 위상잡음은 1 KHz offset에서 -104.8 dBc/Hz 정도의 매우 작은 값을 지님을 확인하였다. Piezoactuator를 이용한 상온에서의 발진기 주파수의 튜닝 결과를 제시하고, 이러한 공진기가 사용된, 튜닝 가능한 고성능 발진기의 제작 가능성에 대해 논의하였다.

HILS를 통한 무인항공기 카메라 지지 능동 마운트 시스템의 진동제어 성능 평가 (Performance Evaluation on an Active Camera Mount System for UAV via Hardware-in-the-loop-simulation)

  • 오종석;최승복;조한준;이철희;조명우
    • 한국소음진동공학회논문집
    • /
    • 제20권8호
    • /
    • pp.767-773
    • /
    • 2010
  • In the present work, vibration control performance of piezoactuator-based active mount system for unmanned aero vehicle(UAV) equipment is evaluated via hardware in the loop simulation(HILS). At first, the vibration level of UAV is measured and from this vibration data, the proper piezostack actuator is selected. Then, the dynamic model of active mount system including four active mounts and UAV camera equipment is derived. In order to evaluate vibration control performance, the HILS system is constructed. The proposed mount is prepared as hardware part and the other mounts are considered in software part. A sliding mode controller is designed and implemented to the HILS system. Effective vibration control results are presented in both time and frequency domains.

압전작동기로 구동 되는 보울 파트 피더의 모드 해석과 이송 속도 제어 (Modal Analysis and Velocity Control of Bowl Parts Feeder Activated by Piezoactuators)

  • 이동호;최승복;김재환
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.839-847
    • /
    • 2000
  • This paper presents modal analysis and mean conveying velocity (M.C.V.) control of bowl parts feeder activated by piezoactuators. Bowl parts feeders are being widely used in many industry fields for automatic assembly line. In general, the electromagnet has been and being used as exciting actuator of these vibratory bowl feeders. However, because of complexity of its mechanism and limited capability of the electromagnet actuator, there exist various impending problems such as severe noise, nonlinear motion of parts, passive characteristics and so forth. As one of solutions for these problems, piezoelectric actuators as new actuating technology have been proposed recently to excite the bowl parts feeder. In this paper, modal analysis of the proposed model has been performed to examine the modal characteristics of the model by using commercial FEM software and modeling with respects to MCV is constructed. Finally, MCV of the parts is to be controlled to track the desired one with PID controller.

진동자를 이용한 하이브리드 극초단 펄스 레이저 초정밀가공시스템 개발 및 Cu-Zn합금 응용 (Development of Vibration Assisted Hybrid Femtosecond Laser Ultra-precision Machining System and Cu-Zn alloy Application)

  • 최원석;윤지욱;조성학;강명창
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.308-312
    • /
    • 2013
  • In this paper, we describe experiment results using a vibration assisted hybrid femtosecond laser (${\lambda}$:795 nm) ultra-precision machining system. The hybrid system we have developed is possible that optical focal point of the femtosecond laser constantly and frequently within the range of PZT(piezoactuator) vibrator working distance. Using the hybrid system, We have experimented on brass and studied about differences of result of hole aspect ratio compare to general experiment setup of femtosecond laser system. Aspect ratio of a micro hole on brass is increased as 54% with 100 Hz vibration frequency and surface roughness of the side wall also improved compare to non-vibration.

비행 구조물에 탑재된 정밀 기기의 능동 진동 제어 (Active Vibration Control of a Precision Equipment on Flying Vehicle Structure)

  • 이재홍;유진형;박영필
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1912-1921
    • /
    • 1999
  • The equipments mounted on guided-missile undertake heavy vibrational disturbance. Sometimes the equipments mounted on guided-missile go wrong so that the guided-missile flies over unintended place. For the vibration isolation of the equipments mounted on guided-missile, active vibration control was performed. In the case of active vibration technique, the stiffness matrix and the mass matrix are derived based on FEM (ANSYS5.0). Model reduction was carried out and, as a result, we got 7 DOF mass and stiffness matrix. For the sake of FEM model identification, modal experiment was carried out. With the help of Sensitivity Analysis, the natural frequencies of FEM were tuned to those of Experiment. In this work, the Sky Hook and the LQG control theory were adopted for v iteration control using stacked piezoactuator. Experiments were performed with changing excitation frequency from 10 Hz upto 200 Hz and we got frequency response function of guided-missile equipments. The magnitude of 3rd mode of guided-missile equipments is 8.6 % that of Uncontrolled in Skyhook controller and is 3.4 % that of uncontrolled in LQG controller.