• Title/Summary/Keyword: Piezo-Electric Material

Search Result 58, Processing Time 0.024 seconds

Finite Element Analysis for Performance Evaluation of Lightweight Piezo-composite Curved Acutator (경량 압전 작동기(LIPCA)의 작동성능 평가를 위한 유한요소 해석)

  • 구남서;박훈철;윤광준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.135-140
    • /
    • 2000
  • A numerical method fur performance evaluation of LIPCA is proposed using a finite element method. Fully coupled formulations for piezo-electric material are introduced and eight-node incompatible element is used. After verifying the developed code, the behaviors of LIPCA and $THUNDER^{TM}$ are investigated.

  • PDF

A Study on Surface Acoustic-Wave Amplfication in Piezo-electric Crystals (Piezo 압전 결정체에서의 표면탄성파 증폭에 관한 연구)

  • 이윤현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.6 no.1
    • /
    • pp.51-57
    • /
    • 1981
  • Carriers moving in a semiconductor can impart gain or loss to an acousic wave traveling through Piezo-electric materials. In this paper, surface a coustic wave amplifiers, which employ the interaction between carriers drifting in a semiconduct or film and electic fields accompanying a Rayleigh wave propagating on a Piezoelectric substrate, are described. The effect of various electromagnetic boundary condition on th propagation of surface waves in Piezoelectrics is considered. An expression for the dependence of surface wave velocity on electic boundary conditions is derived. Calculations show that, for properly prepared material, significant amplification is expected up to the microwave frequencies. At high frequencies, gain is reduced because electro diffusion smooths out the electron bucning necessary for amplification.

  • PDF

A mathematical approach for the effect of the rotation on thermal stresses in the piezo-electric homogeneous material

  • Ramady, Ahmed;Dakhel, B.;Balubaid, Mohammed;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.471-478
    • /
    • 2020
  • In this work, the analytical solution for the stresses in piezo-thermo-elastic homogeneous, transversely isotropic material under the effect of the rotation has investigated. The thermoelasticity theory has used to study the problem. The material subjected to boundary conditions. Finally, the numerical solution has carried out piezo - thermo-elastic material under the effect of rotation, to illustrate the analytical development. The corresponding simulated results of various physical quantities such as the displacements and the stresses, the temperature and the electrical displacement have presented graphically.

A study on characteristics of piezo-buzzer for pressure sensor (압력센서용 압전부저의 특성에 관한 연구)

  • 신영록;김홍근;김철한;최헌일;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.985-988
    • /
    • 2001
  • A piezo-buzzer being used for the purpose of generation of audible frequency, which is a electric-acoustic transducer utilizing the inverse piezoelectric effect. Also it can be used for a pressure sensor according to the piezoelectric effect. But the output of a piezo-buzzer is a differential signal. In this study, we've made a system that can measure a real pressure by integration of output signal. According to our results, it could be found a possibility of application for pressure sensor by measurement of output characteristics when a piezo-buzzer was pressurized and depressurized, and by measuring of an error by means of the drift current of OP-Amp, etc..

  • PDF

Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment

  • Muhammad, Ahmed K.;Hamad, Luay Badr;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.237-257
    • /
    • 2019
  • The present article researches large-amplitude thermal free vibration characteristics of nonlocal two-phase piezo-magnetic nano-size beams having geometric imperfections by considering piezoelectric reinforcement scheme. The piezoelectric reinforcement can cause an enhanced vibration behavior of smart nanobeams under magnetic field. All previous studies on vibrations of piezoelectric-magnetic nano-size beams ignore the influences of geometric imperfections which are crucial since a nanobeam is not always ideal or perfect. Nonlinear governing equations of a smart nanobeam are derived based on classical beam theory and an analytical trend is provided to obtain nonlinear vibration frequency. This research shows that changing the volume fraction of piezoelectric phase in the material has a great influence on vibration behavior of smart nanobeam under electric and magnetic fields. Also, it can be seen that nonlinear vibration behaviors of smart nanobeam is dependent on the magnitude of exerted electric voltage, magnetic imperfection amplitude and substrate constants.

Stabilization Analysis of Piezo-electric Converter for PFM and PWM Control (압전 변압기의 제어 방식에 따른 모델링 및 안정화분석)

  • Yun, Seok-Teak;Park, Seong-Woo;Won, Young-Jin;Lee, Jin-Ho;Kim, Jin-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.401-401
    • /
    • 2009
  • Recently, demands for the development of compact, lightweight power supplies with higher power density and higher efficiency have been increased. Since Piezoelectric Transformer (PT) was emerged in device and material industry, it has been suggested as a viable alternative to the magnetic transformer in some applications. PT has some advantages such as low profile and mechanical energy transfer with little electromagnetic interface (EMI). Also, PT can provide high voltage stepping ratio with good isolation and requires no copper windings saving copper usage especially for large voltage conversion differences. Conventional control of PT converter has mainly two-way. One is the pulse frequency modulation (PFM) control method and the other is the pulse width modulation (PWM) control with frequency fixed method. It is known that the maximum PT efficiency can be obtained when it operates near the resonant frequency of the PT. And, also PT's resonant frequency moves according to the load condition. Therefore, selection of PT converter control method is very difficult. This paper analyzes general piezo-electric converter modeling and proposes a guide-line to selection of control method and stabilization control.

  • PDF

Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using Piezo Actuator (Piezo Actuator를 이용한 초정밀 위치결정기구의 Computer Simulation 및 제어 성능평가)

  • 김재열;김영석;곽이구;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.118-122
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. For composition of this technology, the development of system with high speed and high resolution is needed. At start point and end position vibration must be repressed on this system for composition of position control. This vibration is arisen nose, is increased setting time, is reduced accuracy. Especially, repressed for the lead with high speed. The small actuator with high speed and high resolution is need to repression against this residual vibration. This actuator is, for example, piezo actuator, piezoelectric material that converting from electronic signal to mechanical force is adequate material, beacause of control of control to position and force. In this study, piezo electric material is used to actuator, ultra precision positioning apparatus with stage of hinge structure is designed, simulation is performed, control performance is tested by producing apparatus. For easy usage and stability in industrial field, we perform to simulation and to position control test by digital PID controller.

  • PDF

Synthesis of $LiFePO_4$ by solid-state reaction using organic acids as carbon sources (카본소스로서 유기산을 이용한 $LiFePO_4$의 고상 합성법)

  • Kam, Dae-Woong;Kim, Ke-Tack;Kim, Hyun-Soo;Son, Young-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.279-279
    • /
    • 2009
  • $LiFePO_4$는 낮은 전기전도도로 인하여 전이금속의 도핑과 카본코팅으로 전기화학적 특성을 향상시키려는 연구가 많이 되어 왔다. 또한 다양한 합성법으로 $LiFePO_4$의 입자사이즈를 최적화 하기 위해 많은 연구가 진행중이다. 특히 고상 합성법은 결정의 미세화가 가능하고, 상온에서 쉽고 용이하게 원소간의 합금화 및 화학반응을 유도하는 등의 장점으로 인해 가장 널리 사용하고 있는 합성법중 하나이다. 이번 연구에서도 고상합성법을 사용하여 $LiFePO_4$를 합성했으며, 카본소스로서 카르복시산등의 유기산을 사용하여 코팅을 시도해 보았다. 이렇게 합성된 $LiFePO_4$의 물리적 측정을 통하여 입사의 형상 및 크기를 관찰하였고, 하프셀을 구성하여 전기화학적 특성을 확인하였다.

  • PDF

Development of Piezo-Eloectric Micro-Depth Control System (압전소자에 의한 미세이송시스템의 개발에 관한 연구)

  • 김동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.40-62
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool optical device measurement system. In order to keep a high precision displacement resolution it to useful to take a position sensor and feedback of the error. From the practical point of view high-resolution displacement sensor systems are very expensive and it is difficult to make such a sensitive sensor work properly in a poor operational environment of industry. In this study a piezo-electric micro-depth control system which does not require position sensor but piezoelectric voltage feedback has been developed. It is driven by hysteresis-considering reference input voltage calculated in advance and actuator/sensor characteristics of piezoelectric materials. From the result of experiments a fast and stable response of micro-depth control system has been achieved and an efficient technique to control the piezoelectric actuator suggested.

  • PDF