• Title/Summary/Keyword: Piezo actuator

Search Result 221, Processing Time 0.022 seconds

Performance Evaluation of Non-contact Atomic Force Microscopy Due to Vibration Characteristics of Cantilever (비접촉 원자간력 현미경의 탐침 외팔보 진동특성에 따른 성능 평가)

  • 박준기;권현규;홍성욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.263-268
    • /
    • 2003
  • This paper presents a result of performance evaluation fur non-contact scanning probe microscopy with respect to the vibration characteristics of cantilevers with tips. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made fur the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

  • PDF

Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping

  • Farokhian, Ahmad;Salmani-Tehrani, Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.229-251
    • /
    • 2020
  • In this paper, dynamic buckling of a smart sandwich nanotube is studied. The nanostructure is composed of a carbon-nanotube with inner and outer surfaces coated with ZnO piezoelectric layers, which play the role of sensor and actuator. Nanotube is under magnetic field and ZnO layers are under electric field. The nanostructure is located in a viscoelastic environment, which is assumed to obey Visco-Pasternak model. Non-local piezo-elasticity theory is used to consider the small-scale effect, and Kelvin model is used to describe the structural damping effects. Surface stresses are taken into account based on Gurtin-Murdoch theory. Hamilton principle in conjunction with zigzag shear-deformation theory is used to obtain the governing equations. The governing equations are then solved using the differential quadrature method, to determine dynamic stability region of the nanostructure. To validate the analysis, the results for simpler case studies are compared with others reported in the literature. Then, the effect of various parameters such as small-scale, surface stresses, Visco-Pasternak environment and electric and magnetic fields on the dynamic stability region is investigated. The results show that considering the surface stresses leads to an increase in the excitation frequency and the dynamic stability region happens at higher frequencies.

Experimental Analysis of Operating Parameters for Piezoelectric Jetting Dispenser (압전 젯팅 디스펜서의 작동 변수에 대한 실험적 분석)

  • Sohn, Jung Woo;Hong, Seung-Min;Kim, Gi-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.685-691
    • /
    • 2015
  • In this work, to identify effective parameter for performance of piezoelectric jetting dispenser, experimental investigation is carried out based on design of experiment. After preparing jetting dispenser using two stack-type piezoelectric actuators, basic working principle of the jetting dispenser is described. Eight operating conditions are chose as main factors and it is assumed that each factor has two levels. To reduce number of experiments for performance evaluation, the experimental sets are designed based on factional factorial design method. Experimental setup is established and the weight of single dot is measured by using precision scale. The main and interaction effects of factors are analyzed using commercial statistical program and optimal operating condition for small amount and small variation of weight of dispensed single dot are determined.

A low cost miniature PZT amplifier for wireless active structural health monitoring

  • Olmi, Claudio;Song, Gangbing;Shieh, Leang-San;Mo, Yi-Lung
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.365-378
    • /
    • 2011
  • Piezo-based active structural health monitoring (SHM) requires amplifiers specifically designed for capacitive loads. Moreover, with the increase in number of applications of wireless SHM systems, energy efficiency and cost reduction for this type of amplifiers is becoming a requirement. General lab grade amplifiers are big and costly, and not built for outdoor environments. Although some piezoceramic power amplifiers are available in the market, none of them are specifically targeting the wireless constraints and low power requirements. In this paper, a piezoceramic transducer amplifier for wireless active SHM systems has been designed. Power requirements are met by two digital On/Off switches that set the amplifier in a standby state when not in use. It provides a stable ${\pm}180$ Volts output with a bandwidth of 7k Hz using a single 12 V battery. Additionally, both voltage and current outputs are provided for feedback control, impedance check, or actuator damage verification. Vibration control tests of an aluminum beam were conducted in the University of Houston lab, while wireless active SHM tests of a wind turbine blade were performed in the Harbin Institute of Technology wind tunnel. The results showed that the developed amplifier provided equivalent results to commercial solutions in suppressing structural vibrations, and that it allows researchers to perform active wireless SHM on moving objects with no power wires from the grid.

Study on Scent Media Service in Virtual Reality (발향장치를 이용한 가상현실에서의 향 미디어 서비스)

  • Yu, Ok Hwan;Kim, Min Ku;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.414-420
    • /
    • 2018
  • To augment emotion and immersion in virtual reality (VR), technological research based on scent displays have increased in recent years. The results of extensive studies have enabled the development of methods to interface head mounted displays (HMDs) with scent devices, and the possibility of VR applications of this development was identified via several demonstrations in actual VR environments. Despite all these efforts, more practical methods and conditions for scent display in VR environments are yet to be developed. To efficiently interface VR and scent, this study proposes three ways to set the position for scent display and scent conditions. The first is scent display using local positioning in the VR engine, the second is scent display using the relative distance and orientation between user and object in VR environments, and the third is scent display using time setting. In this study, we developed scent devices using a piezo actuator to validate the proposed method and successfully conducted demonstrations and experiments.

Upper Wafer Handling Module Design and Control for Wafer Hybrid Bonding (Wafer Hybrid Bonding을 위한 Upper Wafer Handling 모듈 설계 및 제어)

  • Kim, Tae Ho;Mun, Jea Wook;Choi, Young Man;An, Dahoon;Lee, Hak-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.142-147
    • /
    • 2022
  • After introducing Hybrid Bonding technology into image sensors using stacked sensors and image processors, large quantity production became possible. As a result, it is currently used in most of the CMOS image market in smartphones and other image-based devices worldwide, and almost all stacked CIS manufacturing sites have focused on miniaturization using hybrid bonding. In this study, an upper wafer handling module for Wafer to Wafer Hybrid Bonding developed to increase the alignment and precision between wafers when wafer bonding. The module was divided two parts to reduce error of both the alignment and degree of precision during wafer bonding. Wafer handling module developed both new Tip/Tilt system controlling θx,θy of upper wafer and striker to push upper wafer. Based on this, it was confirmed through the stability evaluation that the upper wafer handling module can be controlled without any problem during W2W hybrid bonding.

The Study on the Temperature Compensation of Ultrasonic Motor for Robot Actuator Using Fuzzy Controller (퍼지제어기를 이용한 로보트 액츄에이터용 초음파 모터의 온도 보상에 관한 연구)

  • 차인수;유권종;백형래;김영동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.165-172
    • /
    • 1998
  • The electromechanical energy conversion conditioning and processing implementation in USM direct motion control system is generally divided into two power stages: the two-phase high-frequency ac power inversion stage for driving piezoelectric ceramic PZT transducer array off the USM stator and the mechanical thrust power conversion stage based on the frictional force between the piezo electric stator array and the rotary slider of the USM. However, the dynamic and steady-state mathematical modeling of the USM is extremely default from a theoretical point of view because it contains many complicated an nonlinear characteristics dependant on operation temperature. In +2$0^{\circ}C$~3$0^{\circ}C$, the operating characteristics of the USM has represented normal condition. But the other temperature, it has abnormal condition so that driving frequency, current and motor speed will be down. The recent USM has controller without temperature compensation. This study represents the fuzzy controller for speed compensation according to operating temperature by driving frequency.

Non-explosive separation device using screw jack mechanism (나사잭 메커니즘을 이용한 비폭발식 분리장치)

  • Park, Hyun-Jun;Lee, Min-Su;Jo, Jae-Wook;Kim, Byung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.321-326
    • /
    • 2010
  • The non-explosive release device using jack mechanism is designed and fabricated for the small satellite. As a triggering actuator for the release device, a piezo rotory motor with torque of more than $1.7kgf{\cdot}cm$ is employed to guarantee stable activation. For performance tests of separation device, we conducted release time test, preload test and shock test. The device was operated within 1.172sec and activated stably under load of 45kgf. Maximum shock was measured as 18G that is much less than the pyro-separation device produces. We confirmed the possibility as a satellite separation device through above presented tests.

A Study on Control of Walking Assistance Robot for Hemiplegia Patients with EMG Signal (EMG 신호로 반신불수 환자의 보행 보조로봇 제어에 관한 연구)

  • Shin, D.S.;Lee, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • The exoskeleton robot to assist walking of hemiplegia patients or disabled persons has been studied in this paper. The exoskeleton robot with degrees of freedom of 2 axis has been developed and tested for joint motion. The obtained EMG signal from normal person was analyzed and the control signal was extracted from it for convenient and automotive performance of assistance robot to help hemiplegia patient walks as normal person does. the purpose of using FES(Functional Electrical Stimulation) for hemiplegia patient's walk is to restore damaged body function by this, but this could give fatal electrical shock to patients by wrong use or cause quick fatigue in muscle by continuous stimulation. The convenient movement of hemiplegia patients with minimum muscle fatigue was looked possibly by operation of assistance robot exoskeleton using control signal. and the walking assistance exoskeleton robot seemed works more efficiently than using FES stimulator. The experiment in this study was performed based on usual motion in our life like walking, standing-up, sitting-down, and particularly feedback control system using Piezo sensor along with button switch was applied for smooth swing motion in walking. The experiment also shows that hemiplegia patients can move conveniently by using electromyogram signal of healthy leg for the operation signal of assistance robot system attached at damaged symmetrical leg.

  • PDF

A Study on the Torque Characteristics Depending on the Elastic Body Materials of a Hexadecagon Shaped Ultrasonic Motor (탄성체 재질 변화에 따른 16각형 초음파모터의 토크 특성 연구)

  • Cheon, Seong-Kyu;Jeong, Seong-Su;Lee, Byung-Ha;Ha, Yong-Woo;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.286-291
    • /
    • 2014
  • In this study, novel ultrasonic rotary motor of hexadecagon shape stator was proposed. Stator of the hexadecagon ultrasonic motor was composed of an elastic ring and ceramics. The elastic ring had sixteen sides and sixteen angular points. Eight ceramics were attached on the outer surface of the eight sides of the ring. When rotor of cylindrical shaft was inserted inside of the ring stator, central lines of the sixteen sides of the stator hold the shaft by the slight pressures(frictions). This slight pressure was a preload of the motor and it could be controlled by radius and thickness of the ring. When two sinusoidal voltages which have 90 degree phase difference were applied to each four ceramics, elliptical displacements of inner surface of the ring were obtained. These elliptical displacements of the inner surface rotated the shaft rotor through the frictions. The proposed hexadecagon ultrasonic motor was designed and analyzed by using the finite element method (FEM), depending on materials of the elastic ring. Based on the FEM results, one model of motor which showed maximum displacement at contact points was chosen and fabricated. And characteristics of the motor were compared with simulated results. When the motor was fabricated with these results, EL20ET0.5CT0.5CW2 model showed 115[rpm] speed about input voltage of 60[Vrms] at 65.6[kHz]. And the maximum torque of 6[gfcm] was obtained. From these results, the hexadecagon shaped ultrasonic motor can be used to actuator for optical device which needs detailed position control. Also it can be used to medical and portable device by reducing size and weight.