• Title/Summary/Keyword: Pi genes

Search Result 165, Processing Time 0.023 seconds

Comprehensive analysis of miRNAs, lncRNAs and mRNAs profiles in backfat tissue between Daweizi and Yorkshire pigs

  • Chen Chen;Yitong Chang;Yuan Deng;Qingming Cui;Yingying Liu;Huali Li;Huibo Ren;Ji Zhu;Qi Liu;Yinglin Peng
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.404-416
    • /
    • 2023
  • Objective: Daweizi (DWZ) is a famous indigenous pig breed in China and characterized by tender meat and high fat percentage. However, the expression profiles and functions of transcripts in DWZ pigs is still in infancy. The object of this study was to depict the transcript profiles in DWZ pigs and screen the potential pathway influence adipogenesis and fat deposition, Methods: Histological analysis of backfat tissue was firstly performed between DWZ and lean-type Yorkshire pigs, and then RNA sequencing technology was utilized to explore miRNAs, lncRNAs and mRNAs profiles in backfat tissue. 18 differentially expressed (DE) transcripts were randomly selected for quantitative real-time polymerase chain reaction (QPCR) to validate the reliability of the sequencing results. Finally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to investigate the potential pathways influence adipocyte differentiation, adipogenesis and lipid metabolism, and a schematic model was further proposed. Results: A total of 1,625 differentially expressed transcripts were identified in DWZ pigs, including 27 upregulated and 45 downregulated miRNAs, 64 upregulated and 119 down-regulated lncRNA, 814 upregulated and 556 downregulated mRNAs. QPCR analysis exhibited strong consistency with the sequencing data. GO and KEGG analysis elucidated that the differentially expressed transcripts were mainly associated with cell growth and death, signal transduction, peroxisome proliferator-activated receptors (PPAR), AMP-activated protein kinase (AMPK), PI3K-Akt, adipocytokine and foxo signaling pathways, all of which are strongly involved in cell development, lipid metabolism and adipogenesis. Further analysis indicated that the BGIR9823_87926/miR-194a-5p/AQP7 network may be effective in the process of adipocyte differentiation or adipogenesis. Conclusion: Our study provides comprehensive insights into the regulatory network of backfat deposition and lipid metabolism in pigs from the point of view of miRNAs, lncRNAs and mRNAs.

Effect of Stem Cell-Derived Conditioned Medium on the In Vitro Maturation and Embryonic Development of Parthenogenetic Embryos in Pigs (Stem Cell-Derived Conditioned Medium 첨가가 돼지난자의 체외성숙 및 단위발생란의 초기배 발육에 미치는 영향)

  • Kwon, Dae-Jin;Hwang, In-Sul;Kwak, Tae-Uk;Oh, Keon Bong;Ock, Sun-A;Chung, Hak-Jae;Im, Gi-Sun;Hwang, Seongsoo
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • The addition of growth factors and cytokines to in vitro culture (IVC) media could affect embryo development and the quality of the resulting blastocysts. The present study was performed to investigate the effect of porcine induced pluripotent stem cell (piPSC)-culture conditioned medium (CM) on the in vitro maturation (IVM) and development of parthenogentic embryos (parthenotes) in pigs. Cumulus-oocyte complexes (COCs) or activated oocytes were cultured in IVM or IVC medium supplemented with 0 (control), 25, or 50% of stem cell medium (SM) or CM, respectively. The maturation rate of CM-25% group was significantly improved when compared with control group (p<0.05), but that was not different among SM or CM groups. Blastocyst formation rate was significantly higher in CM-25% group (29.2%) than that of control (20.7%), SM-50% (19.6%) and CM-50% (23.66%, p<0.05). Cell number and the apoptotic cell index in blastocysts was significantly lower in SM-25% than in CM-25% group (p<0.05). The embryo quality related genes, OCT4, KLF4, TERT and ZFP42, were significantly increased in CM-25% group compared with control (p<0.05). In conclusion, the addition of 25% of CM to IVM and IVC medium positively influences not only the developmental potential also quality of parthenotes in pig.

Microarray Analysis of Long Non-coding RNA Expression Profile Associated with 5-Fluorouracil-Based Chemoradiation Resistance in Colorectal Cancer Cells

  • Xiong, Wei;Jiang, Yong-Xin;Ai, Yi-Qin;Liu, Shan;Wu, Xing-Rao;Cui, Jian-Guo;Qin, Ji-Yong;Liu, Yan;Xia, Yao-Xiong;Ju, Yun-He;He, Wen-Jie;Wang, Yong;Li, Yun-Fen;Hou, Yu;Wang, Li;Li, Wen-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3395-3402
    • /
    • 2015
  • Background: Preoperative 5-fluorouracil (5-FU)-based chemoradiotherapy is a standard treatment for locally advanced colorectal cancer (CRC). However, CRC cells often develop chemoradiation resistance (CRR). Recent studies have shown that long non-coding RNA (lncRNA) plays critical roles in a myriad of biological processes and human diseases, as well as chemotherapy resistance. Since the roles of lncRNAs in 5-FU-based CRR in human CRC cells remain unknown, they were investigated in this study. Materials and Methods: A 5-FU-based concurrent CRR cell model was established using human CRC cell line HCT116. Microarray expression profiling of lncRNAs and mRNAs was undertaken in parental HCT116 and 5-FU-based CRR cell lines. Results: In total, 2,662 differentially expressed lncRNAs and 2,398 mRNAs were identified in 5-FU-based CRR HCT116 cells when compared with those in parental HCT116. Moreover, 6 lncRNAs and 6 mRNAs found to be differentially expressed were validated by quantitative real time PCR (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the differentially expressed mRNAs indicated involvement of many, such as Jak-STAT, PI3K-Akt and NF-kappa B signaling pathways. To better understand the molecular basis of 5-FU-based CRR in CRC cells, correlated expression networks were constructed based on 8 intergenic lncRNAs and their nearby coding genes. Conclusions: Changes in lncRNA expression are involved in 5-FU-based CRR in CRC cells. These findings may provide novel insight for the prognosis and prediction of response to therapy in CRC patients.

Genetic and Agronomic Analysis of a Recombinant Inbred Line Population to Map Quantitative Trait Loci for Blast Resistance and Select Promising Lines in Rice (벼 RIL집단의 유전 분석과 농업형질 분석을 통한 도열병 저항성 QTL 탐색 및 유망계통 선발)

  • Ha, Su-Kyung;Jeung, Ji-Ung;Jeong, Jong-Min;Kim, Jinhee;Mo, Youngjun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.172-181
    • /
    • 2020
  • Koshihikari has been one of the most popular rice cultivars with good eating quality since the 1960s despite its susceptibility to blast disease and lodging. To map the genes controlling blast resistance and to develop promising blast-resistant breeding lines inheriting Koshihikari's high eating quality, a recombinant inbred line (RIL) population was developed from a cross between Koshihikari and a blast resistance donor with early maturity, Baegilmi. A total of 394 Koshihikari × Baegilmi RILs (KBRIL), and the two parents, were evaluated for blast resistance and major agronomic traits including heading date, culm length, panicle length, and tiller number. A linkage map encompassing 1,272.7 cM was constructed from a subset of the KBRIL (n = 142) using 130 single nucleotide polymorphisms. Two quantitative trait loci (QTL) for blast resistance, qBL1.1 harboring Pish/Pi35 and qBL2.1 harboring Pib, were mapped onto chromosomes 1 and 2, respectively. qBL1.1 was detected in both of the experimental sites, Namwon and Jeonju, while qBL2.1 was only detected in Namwon. qBL1.1 and qBL2.1 did not affect agronomic traits, including heading date, culm length, panicle length, and tiller number. From the 394 KBRILs, lines that were phenotypically similar to Koshihikari were selected according to heading date and culm length and were further divided into the following two groups based on blast resistance: Koshishikari-type blast resistant lines (KR, n = 15) and Koshishikari-type blast susceptible lines (KS, n = 15). Although no significant differences were observed in the major agronomic traits between the two groups, the KR group produced a greater mean head rice ratio than the KS group. The present study provides useful materials for developing blast-resistant cultivars that inherit both Koshihikari's high eating quality and Baegilmi's blast resistance.

Effect of Trichostatin A on Anti HepG2 Liver Carcinoma Cells: Inhibition of HDAC Activity and Activation of Wnt/β-Catenin Signaling

  • Shi, Qing-Qiang;Zuo, Guo-Wei;Feng, Zi-Qiang;Zhao, Lv-Cui;Luo, Lian;You, Zhi-Mei;Li, Dang-Yang;Xia, Jing;Li, Jing;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7849-7855
    • /
    • 2014
  • Purpose: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. Materials and Methods: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of ${\beta}$-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for ${\beta}$-catenin, HDAC1and HDAC3 was tested by q-PCR. ${\beta}$-catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. Results: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was $6.22{\pm}0.25%$, which increased to $7.17{\pm}0.20%$ and $18.1{\pm}0.42%$ in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of ${\beta}$-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of ${\beta}$-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of ${\beta}$-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. Conclusions: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/${\beta}$-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.