• Title/Summary/Keyword: Phytoplankton pigments

Search Result 37, Processing Time 0.026 seconds

Distribution of Phytoplankton Pigments in the Korea Strait

  • Park, Mi-Ok;Moon, Chang-Ho;Yang, Han-Soeb;Park, Jeon-Sook
    • Journal of the korean society of oceanography
    • /
    • v.34 no.2
    • /
    • pp.95-112
    • /
    • 1999
  • To investigate a phytoplankton community structure and its biomass distribution in the Korea Strait, phytoplankton pigments were quantitatively measured by HPLC method, with hydro-graphic conditions in August and October, 1996. The measured chi. a concentrations were in the range of 7.1-1,280.7 ng/1. Horizontal distribution pattern of chi. a in summer (August) was very different from that of autumn (October). High concentration of chi. a occurred near the coast with relatively low salinity (< 33%). Vertically, the highest concentrations of pigments at most of the stations were found near the surface and above the thermocline. The maximum concentration of chi. a in October was four times higher than in August. It was notable to measure relatively high concentration of chi. b up to 190.8 ng/1 in the study area, since chi. bcontaining green algae and prochlophytes have been ignored because of their minute size and sensitivity to common preservatives. Major carotenoids detected were fucoxanthin, zeaxanthin, 19'-hexanoyloxyfucoxanthin, and prasinoxanthin. Diatoms were the dominant group with secondary important groups as pryrnnesiophytes and cyanobacteria for the biomass of phytoplankton for both cruises. The dominant species of diatoms in summer were Thalassiosira sp. and Chaetoceros peruvianus. As minor groups, prasinophytes, crysophytes, and cryptophytes were confirmed by their marker pigments and dinoflgellates by microscopical observation. Degradation products of chi. a was minor. Interestingly, at 200 m depth of St A4, the deepest station in the western channel of the Korea Strait, substantial amounts of chi. a including fucoxanthin, 19'-hexanoyloxyfucoxanthin, chi. b, and degradation products of chi. a was measured from both cruises. Higher concentration (2-3 times) of those pigments were detected from samples in summer than in autumn. Small decrease in concentration of phosphate at this depth of St. A4 was also observed. It suggested that this bottom cold water was transported from the subsurface water with biomass of active phytoplankton, which was sunk and flowed southward.

  • PDF

The Pigments Variation of Phytoplankton in the Seomjin and Yeongsan River estuary (섬진강과 영산강 하구의 식물플랑크톤 기원 색소분포 변동)

  • Jeon, Hyeji;Lee, Eugene;Son, Moonho
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.99-106
    • /
    • 2020
  • To investigate effect of variation in physiochemical conditions due to river discharge on phytoplankton, field surveys were conducted in the Seomjin and Yeongsan River estuaries from April to November 2016. The concentrations of DIN and DSi in Seomjin River estuary were gradually low as distance from upstream. On the other hands, the concentrations of DIN and DSi in Yeongsan River estuary were critically high at upstream, due to which is characterized as semi-enclosed eutrophic area. A total of 12 phytoplankton pigments were analyzed, and the distribution of each taxa was investigated using indicator for each phytoplankton taxa. Fucoxanthin, an indicator pigment of diatoms, showed an average of 0.61±1.00 ㎍ l-1 and 0.76±1.22 ㎍ l-1 in the Seomjin and Yeongsan River estuaries, respectively. Concentration of fucoxanthin was more than twice that of other pigments except chlorophyll a., indicating that diatoms were dominant taxa. Peridinin, an indicator pigment of dinoflagellate, showed some similar tendency to the microscopic observation, but mismatch results were also present, indicating a technical limitation of pigment analysis. Chlorophyll b, alloxanthin, and zeaxanthin, which are indicator pigments of green algae, cryptomonads, and cyanobacteria, were detected in both estuaries even though those taxa were not detected in microscopic observation. This indicates that the two estuaries were affected by freshwater species. Here, we can suggest that phytoplankton composition in estuary was directly influenced by the inflow from upstream. In particular, the phytoplankton population dynamics in Yeongsan River estuary was greatly associated with a large-scale artificial dyke, especially in summer rainy season. On the other hands, the seasonal and horizontal distribution of phytoplankton in Seomjin River estuary has changed along the salinity gradients and inflow-related changes.

Evaluation of Grinding Effects on the Extraction of Photosynthetic Pigments for HPLC Analysis (광합성 색소의 HPLC 분석을 위한 여과지 분쇄 효과 평가)

  • Jang, Su Jin;Park, Mi Ok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.2
    • /
    • pp.71-77
    • /
    • 2015
  • High-Performance Liquid Chromatography (HPLC) is a widely used method for measuring the concentration of chlorophyll a as an indicator for estimating phytoplankton biomass and primary production and also for identifying carotenoids to determine phytoplankton composition. However, tissue grinding procedure requires a lot of time and experience in the analysis of multiple sample. Accordingly, we measured the concentrations of photosynthetic pigments before and after the grinding, in order to understand the grinding effects on the quantitative analysis of chlorophylls and carotenoids using samples from southwestern East Sea. When tissue grinding procedure was omitted, we found that Chl a concentrations were underestimated up to 45% in average. Also, concentrations of Zeaxanthin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, biomarkers of pico and nano-size phytoplankton, were underestimated up to maximum 77~85% without grinding. We found that the smaller the phytoplankton, the bigger underestimation of their biomarker pigments concentration is likely to happen due to the incomplete extraction. Thus, tissue grinding procedure should be included for HPLC analysis in all cases, to prevent the underestimation of not only Chl a but also carotenoids pigments.

Primary Productivity and Photosynthetic Pigment Production Rates of Periphyton and Phytoplankton in Lake Paldang using 13C Tracer (13C 추적자를 이용한 팔당호 수변역 부유 및 부착조류의 일차생산력과 광합성 색소 생산속도 연구)

  • Min, Jun oh;Ha, Sun Yong;Hur, Jin;Shin, Kyung Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • The primary productivity and production rate of photosynthetic pigment of periphyton and phytoplankton were estimated using a $^{13}C$ stable labeling technique in May 2011, in the waterfront of Lake Paldang. Primary productivity of periphyton ($28.15mgC\;m^{-2}\;d^{-1}$) was higher than phytoplankton production ($0.14mgC\;m^{-2}\;d^{-1}$). The net production rates of photosynthetic pigments(Chl a and Fucoxanthin) of periphyton were $2.53ngC\;m^{-2}\;d^{-1}$ and $0.12ngC\;m^{-2}\;d^{-1}$, respectively. On the other hand, the net production rate of pigments on phytoplankton (Chl a : $0.023ngC\;m^{-2}\;d^{-1}$, Fucoxanthin: $0.002ngC\;m^{-2}\;d^{-1}$) was lower than that of periphyton. Specific production rates of individual pigments of phytoplankton to the total primary productivity indicate the predominance of diatom (Fucoxanthin) species in phytoplankton assemblage in Lake Paldang. The net individual production rate of pigments by $^{13}C$ tracer was a useful tool to estimate the contribution of each phytoplankton class for total primary productivity, and it is possible to calculate the seasonal contribution of each phytoplankton class to the total primary productivity in the aquatic ecosystems. This study is the first report on photosynthetic pigment production rates of periphyton and phytoplankton.

Phytoplankton Distribution in the Eastern Part of the Yellow Sea by the Formation of Tidal Front and Upwelling during Summer (황해 동부 해역에서 하계에 조석전선과 용승에 의한 식물플랑크톤군집 분포)

  • Lee, Young-Ju;Choi, Joong-Ki;Shon, Jae-Kyoung
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.111-123
    • /
    • 2012
  • To understand the phytoplankton community in the eastern part of the Yellow Sea (EYS), in the summer, field survey was conducted at 25 stations in June 2009, and water samples were analyzed using a epifluorescence microscopy, flow cytometry and HPLC method. The EYS could be divided into four areas by a cluster analysis, using phytoplankton group abundances: coastal mixing area, Anma-do area, transition water, and the central Yellow Sea. In the coastal mixing area, water column was well mixed vertically, and phytoplankton was dominated by diatoms, chrysophytes, dinoflagellates and nanoflagellates, showing high abundance ($>10^5\;cells\;l^{-1}$). In Anma-do coastal waters characterized by high dominance of dinoflagellates, high phytoplankton abundance and biomass separated from other coastal mixing area. The southeastern upwelling area was expanded from Jin-do to Heuksan-do, by a tidal mixing and coastal upwelling in the southern area of Manjae-do, and phytoplankton was dominated by benthic diatoms, nanoflagellates and Synechococcus group in this area. Phytoplankton abundance and biomass dominated by pico- and nanophytoplankton were low values in the transition waters and the central Yellow Sea. In the surface of the central Yellow Sea, high dominance of photosynthetic pigments, 19'-hexanoyloxyfucoxanthin and zeaxanthin implies that haptophytes and cyanobacteria could be the dominant group during the summer. These results indicate that the phytoplankton communities in the EYS were significantly affected by the formation of tidal front, thermal stratification, and coastal upwelling showing the differences of physical and chemical characteristics during the summer.

Plankton Community Composition Related to Marine Environmental Factors in Haengam Bay (행암만 해양환경요인과 플랑크톤 군집구조의 변동)

  • Kim, Jeong Bae;Hong, Sokjin;Lee, Won-Chan;Kim, Hyung Chul;Lee, Yong-Woo;Youn, Seok-Hyun;Cho, Yoonsik
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.2015-2028
    • /
    • 2014
  • We analyzed with HPLC (High Performance Liquid Chromatography) analysis photosynthetic pigments and environmental factors, microscopic observations of the phytoplankton and zooplankton in the seawater every month from February 2009 to November 2010 in Haengam Bay. The level of dissolved inorganic nutrients was the highest between July and September, when freshwater influx was at its peak, whereas chlorophyll a levels were the highest in April and August. Also, phytoplankton pigment concentration increased when dissolved inorganic nutrients are carried into nearshore waters by rainfall runoff. Based on identification of phytoplankton and photosynthetic pigments results, diatoms were mainly dominant while dinoflagellate populations increased at July and August 2009, May 2010. The zooplankton communities are dominated in terms of Noctiluca scintillans. The contribution of Noctiluca scintillans in 2010 accounts for approximately 77.3% of the total zooplankton. Distribution patterns over time of zooplankton in the seasonal distribution of phytoplankton showed a different pattern.

Phytoplankton in the Waters of the Ieodo Ocean Research Station Determined by Microscopy, Flow Cytometry, HPLC Pigment Data and Remote Sensing (현미경, Flow Cytometer, HPLC 색소자료 및 원격탐사를 이용한 이어도 관측기지 주변수의 식물플랑크톤 연구)

  • Noh, Jae-Hoon;Yoo, Sin-Jae;Lee, Jung-Ah;Kim, Hyun-Chul;Lee, Jae-Hak
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.397-417
    • /
    • 2005
  • Phytoplankton community structure and distribution pattern in the surface water around the Ieodo Ocean Research Station were investigated during seven cruises carried out from July, 2003 to October, 2004. Samples were analyzed using various tools including a microscope, flow cytometer, and HPLC. Satellite images were used to analyze spatio-temporal phytoplankton biomass distribution. SeaWiFS chlorophyll a (chl a) images showed that spring blooms occurred in April-May near the Ieodo Station, and these waters were under the influence of Changjiang Dilute Water during July-October. Also, during the July-October period, HPLC pigments data showed increasing zeaxanthin concentrations, a marker pigment of cyanobacteria whereas increasing concentrations of various other pigments such as fucoxanthin, peridinin, prasinoxanthia alloxanthin, 19'-hexanoyloxyfucoxanthin and chlorophyll b were noted during spring blooms. Such pigment marker data were consistent with picoplankton data analyzed by flow cytometer and nano-microplankton analyzed by microscope. The pigment-CHEMTAX method was used to drive the phytoplankton group apportioned chi a. Diatoms, chlorophytes, dinoflagellates, and cryptophytes comprised 25.8, 20.7, 15.9, and 14.1%, respectively, of the total chl a in May. Average cyanobacteria concentrations in July-October contributed 25.4% of the total concentration. This was the highest percent contribution and was followed by chlorophytes, diatoms, and prymnesiophytes. This study discusses results from various methods, similarities and differences in the results among those methods, and the application range of the results from different analytical methods. Also, the study reveals a detailed phytolpankton community structure in the waters around the Ieodo Station, and suggests future monitoring considerations in relation to cell morphology, ecology and diversity factors according to taxonomic groups.

Analysis on the Pigment Composition of Phytoplankton Assemblages using HPLC (High Performance Liquid Chromatography) in the Adjacent Waters of Nuclear Power Plants in Spring

  • Choi, Hyu-Chang;Kang, Yeon-Shik;Choi, Joong-Ki;Song, Tae-Yoon;Yoo, Man-Ho
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.234-242
    • /
    • 2004
  • The pigment composition and concentration of phytoplankton assemblages using HPLC in the adjacent waters of four nuclear power plants (Yonggwang, Kori, Wolsong and Ulchin) were investigated during the spring blooming in 2004. The mean concentration of chlorophyll a ranged from 563.8 to 2,949.0ng $l^{-1}$, with the lowest concentration at Kori and the highest concentration at Wolsong. Among the carotenoids, the amounts of fucoxanthin and chlorophyll $C_2$ were relatively higher than those of other pigments in the study site. As minor pigments, zeaxanthin, chlorophyll b, 19'-butanoyloxyfucoxanthin, diadinoxanthin, 19'-hexanoyloxyfucoxanthin, chlorophyll $C_3$ and peridinin were detected. The results of pigment composition and concentration showed that diatoms had an important proportion of phytoplankton community when a spring bloom occurred. Cyanobacteria was present relatively low density at the Wolsong and the green alga such as chlorophytes and prasinophytes were abundant at the Yonggwang and Kori, while dinoflagellates characterized by peridinin were common at Ulchin and Kori. The pigment composition and concentration of phytoplankton after passing through the cooling-water system of nuclear power plant were highly variable. No distinct trend of the change of each pigment composition and amount was detected but the variation of fucoxanthin and chlorophyll $C_2$ highly coupled with that of chlorophyll a. We pointed out that the diatom controlled the overall variation of phytoplankton biomass during the spring season.

Composition and Distribution of Phytoplankton with Size Fraction Results at Southwestern East/Japan Sea

  • Park, Mi-Ok
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.301-313
    • /
    • 2006
  • Abundance and distribution of phytoplankton in seawater at southwestern East/Japan Sea near Gampo were investigated by HPLC analysis of photosynthetic pigments during summer of 1999. Detected photosynthetic pigments were chlorophyll a, b, $c_{1+2}$ (Chl a, Chl b, Chl $c_{1+2}$), fucoxanthin (Fuco), prasinoxanthin (Pras), zeaxanthin (Zea), 19'-butanoyloxyfucoxanthin (But-fuco) and beta-carotene (B-Car). Major carotenoid was fucoxanthin (bacillariophyte) and minor carotenoids were Pras (prasinophyte), Zea (cyanophyte) and But-fuco (chrysophyte). Chl a concentrations were in the range of $0.16-8.3\;{\mu}g/land$ subsurface chlorophyll maxima were observed at 0-10m at inshore and 30-50 m at offshore. Thermocline and nutricline tilted to the offshore direction showed a mild upwelling condition. Results from size-fraction showed that contribution from nano+picoplankton at Chl a maximum layer was increased from 18% at inshore to 69% at offshore on average. The maximum contribution from nano+picoplankton was found as 87% at St. E4. It was noteworthy that contribution from nano+picoplanktonic crysophytes and green algae to total biomass of phytoplankton was significant at offshore. Satellite images of sea surface temperature indicated that an extensive area of the East/Japan Sea showed lower temperature ($<18\;^{\circ}C$) but the enhanced Chi a patch was confined to a narrow coastal region in summer, 1999. Exceptionally high flux of low saline water from the Korea/Tsushima Strait seemed to make upwelling weak in summer of 1999 in the study area. Results of comparisons among Chi a from SeaWiFS, HPLC and fluorometric analysis showed that presence of Chi b cause underestimation of Chi a about 30% by fluorometric analysis but overestimation by satellite data about 30-75% compared to HPLC data.

Temporal Variation of Phytoplankton Community Related to Water Column Structure in the Korea Strait

  • Lee, Yong-Woo;Park, Hyun-Je;Choy, Eun-Jung;Kim, Yun-Sook;Kang, Chang-Keun
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.321-329
    • /
    • 2010
  • Photosynthetic pigments, nutrients, and hydrographic variables were examined in order to elucidate the spatio-temporal variation of water column structure and its effect on phytoplankton community structure in the western channel of the Korea Strait in fall 2006 and spring 2007. High phytoplankton biomass in the spring was associated with high salinity, implying that nutrients were not supplied by coastal waters or the Yangtze-River Diluted water (YRDW) with low salinity. Expansion of the Korea Strait Bottom Cold Water (KSBCW) and a cold eddy observed during the spring season might enhance the nutrient supply from the subsurface layer to the euphotic zone. Chemotaxonomic examination showed that diatoms accounted for 60-70% of total biomass, followed by dinoflagellates. Nutrient supply by physical phenomena such as the expansion of the KSBCW and the occurrence of a cold eddy appears to be the controlling factors of phytoplankton community composition in the Korea Strait. Further study is needed to elucidate the mechanisms by which the KSBCW is expanded, and its role in phytoplankton dynamics.