• Title/Summary/Keyword: Phytochrome

Search Result 81, Processing Time 0.022 seconds

Effect of Growth Retardant BX-112 on Growth, Floral Initiation, and Endogenous GA Levels in Sorghum

  • Lee, In-Jung;Kim, Kil-Ung;Page W. Morgan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.71-76
    • /
    • 1998
  • To define the relations between endogenous GA levels and growth and flowering in short-day plant sorghum, growth retardant BX-112 was applied to two sorghum genotypes, wild-type and phytochrome B mutant (phyB-1), which grows faster and flowers earlier than the wild-type. BX-112 and $GA_3$ were applied as a soil drench, and plant height, culm length, and date to floral initiation were investigated. Endogenous GAs contents were measured with GC-MS-SIM. BX-112 treatments inhibited shoot growth in both genotypes and drastically reduced $GA_1$ and $GA_8$ levels. With increasing BX-112 concentrations, $GA_1$ concentrations declined linearly, but caused the accumulation of intermediates from $GA_12$ to $GA_20$. This result implies that $GA_1$ is the major active endogenous GA in shoot elongation in a short day plant sorghum. The inhibition of plant growth in both of wild type and phyB-1 by BX-112 was very similar, while BX-112 effects on floral initiation in two types of plants differed significantly. Floral initiation of phyB-1 was not affected by BX-1l2, but that of wild-type was delayed as BX-1l2 concentration increased. Because BX-112 treatment causes accumulation of biosynthetic intermediates between synthetic pathway from $GA_12$ to $GA_20$ and because phyB-1 is altered in GA metabolism in this same region of the early C13-hydroxylation pathway, BX-112 may fail to block flowering of phyB-1.

  • PDF

Seed Dormancy and Germination Characteristics of Annual Bluegrass (Poa annua L.) (새포아풀(Poa annua sp.)의 종자휴면과 발아특성)

  • 김태준;송재은;최정섭;조광연
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • Two types of annual bluegrass have been reported, and those consist of annual type (Poa annua ssp. annua) and perennial type (Poa annua ssp. reptans). As a weed, annual bluegrasses are commonly found in putting greens and fairways in many golf courses. Due to its strong competitiveness such as tremendous seed reproduction rate a year, prostrate growth habit, and no herbicide availability, annual bluegrasses have been considered as one of the most hard-to-control weeds in turf management systems. A growth chamber study was conducted to determine seed dormancy and to understand seed germination characteristics of annual bluegrass (Poa annua ssp. annua). Freshly harvested seeds showed 80 and 55% germination at 30 and $35^{\circ}C$, respectively, indicating that the optimum temperature of annual bluegrass is $30^{\circ}C$. However, the seed germination occurred only under light condition at any given temperature. This result demonstrated that light is prerequisite for the seed germination, and no primary dormancy of annual bluegrass seed exists. Secondary seed dormancy induced by unfavorable temperatures and dark condition was broken through 4 to 6 wk-storage at $4^{\circ}C$ with moisture, and the stored seeds germinated at $20^{\circ}C$ even under the dark. In red and far-red light trial, fresh seeds resulted in 40% germination under red while no seed germination occurred under far-red light condition, indicating that phytochrome Pr and Pfr could be related to annual bluegrass seed germination. When the far-red light replaced the red the germination was recovered, but this reversibility did not reach to the germination level under the red light only. This result implied that other lights than red and far-red would play an important role on seed germination of annual bluegrass.

  • PDF

The Genes Expression Patterns Induced by High Temperature in Licorice (Glycyrrhiza uralensis F.) (온도상승에 따른 감초(Glycyrrhiza uralensis Fisch.)의 유전자 발현 양상)

  • Hyeju Seong;Woosuk Jung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.56-56
    • /
    • 2020
  • 감초는 다년생 콩과(Leguminocae) 식물로 국내에서 시중가격이 높은 만주감초가 일부 재배되고 있다. 우리나라에서 감초 재배법이 불완전한 상황에서 한반도의 기후변화에 의한 온도 상승은 약용작물의 생산 및 품질에 많은 영향을 미칠 것으로 예상되므로 본 연구에서는 재배환경 중 온도 조건만 조절할 수 있는 온도구배터널(temperature gradient tunnel system)을 이용하여 4개의 T1(외기온도+0.5~1.3℃), T2(+1.3~2.2℃), T3(+2.2~3.2℃), T4(+3.2~4.0℃) 처리로 온도구배 하여 4년생 만주감초(Glycyrrhiza uralensis F.)를 재배하였다. 지하부가 오래된 모주와 신초1의 경우 저온(T1)과 중간구간(T2, T3)에서 초장과 총화수가 우세하였고, 번식이 가장 늦은 신초2의 경우 중간구간(T2, T3)에서의 생육 및 개화반응이 뚜렷했다. 각 온도처리구마다 3개의 감초 개체를 선발하여 모주의 정단으로부터 5개의 성엽을 채취하였다. Reverse transcription quantitative PCR (RT-qPCR)은 AccuPower® GreenStarTM RT-qPCR Master Mix (Bioneer, Korea)를 이용하여 진행되었다. Primer 디자인은 NCBI Primer-blast 프로그램을 사용해 제작하였고 ABI StepOne real time system (Applied Biosystem)의 melting curve analysis에서 one-peak test를 통해 gene specific primer임을 확인하였다. 각 온도처리구의 감초 잎에서 RNA를 추출하였고, RT-qPCR을 통해 감초의 유전자 발현양상을 비교, 분석하였다. Phytochrome interacting factor 4 (PIF4)는 식물 호르몬을 유발하는 전사조절을 조정함으로써 고온 신호전달에 핵심적인 역할을 수행한다. 활성화된 Phytochrome B(PhyB)는 PIF4의 활성을 억제한다고 알려졌다. Eukaryotic initiation factors(eIFs)는 mRNA 번역 개시인자로 유전자 발현과 특정 단백질 생산을 조절하는 역할을 한다. 본 결과는 온도조건에서 반응하는 생리적 변화를 전사체 수준에서 조사 분석하여 생리해석의 기초자료로 활용, 국내 감초 재배를 위한 환경조건 구명 및 적지 선정 기초자료로서 활용을 기대한다.

  • PDF

High Throughput Proteomic Approaches for the Dissection of Light Signal Transduction Pathways in Photosynthetic Cyanobacterium Synechocystis sp.PCC 6803

  • Chung Young-Ho;Park Young Mok
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.203-205
    • /
    • 2002
  • Light is an environmental signal that regulates photomovement and main energy source of photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803 (Syn6803). Syn6803 is a popular model system for study of plant functional genomics. In this report, we adopted 2D gel based proteomics study to investigate proteins related with the light absorption and photo-protection in Syn6803. More than 700 proteins were detected on the SDS-gels stained with silver nitrate. Several proteins showing different expression level under various light conditions were identified with MALDI-TOF Mass spectrometry. As a comparison, we also conducted ICAT-based proteome study using WT and cphl (cyanobacterial phytochrome 1) mutant. A cphl deletion led to changes in the expression of proteins involved in translation, photosynthesis including photosystem and CO2 fixation, and cellular regulation. We are currently involved in TAP-tagging method to study protein-protein interactions in search for the molecular component involved in the light signal transduction of Syn6803 photomovement.

  • PDF

Plant Light Signaling Mediated by Phytochromes and Plant Biotechnology

  • Song, Pill-Soon
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1998.07a
    • /
    • pp.83-96
    • /
    • 1998
  • The plant pigment proteins phytochromes are a molecular light sensor or switch for photomorphogenesis involving a variety of growth and developmental responses of plants to red and far-red wavelength light. Underscoring the photomorphogenesis mediated by phytochromes is the light signal transduction at molecular and cellular levels. For example, a number of genes activated by the phytochrome-mediated signal transduction cascade have been identified and characterized, especially in Arabidopsis thaliana. The light sensor/switch function of phytochromes are based on photochromism of the covalently linked tetrapyrrole chromophore between the two photoreversible forms, Pr and Pfr. The photochromism of phytochromes involves photoisomerization of the tetrapyrrole chromophore. The "photosensor" Pr-form ("switch off" conformation) of phytochromes strongly absorbs 660 nm red light, whereas the "switch on" Pfr-conformation preferentially absorbs 730 nm far-red light. The latter is generally considered to be responsible for eliciting transduction cascades of the red light signal for various responses of plants to red light including positive or negative expression of light-responsive genes in plant nuclei and chloroplasts. In this paper, we discuss the structure-function of phytochromes in plant growth and development, with a few examples of biotechnological implications.

  • PDF

Initiation of Germination Characters of Plant Seed by Light Quality (광에 의한 종자의 발아특성 발현과 그 분화 및 형성에 관하여)

  • 최관삼
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.175-190
    • /
    • 1987
  • Germination characters of the lettuce seed that received photoperiodic pretreatments of low or high temperature from the flowering to harvest. MSU-15 seed, one of the lettuce cultivars used, having high dark germination, was modified to low dark germination by the long-day treatments during the seed formation. Light-requiring MSU-16 seed was modified to the dark-germination seed by high temperature given at the seed formation period. Above results suggest that the environmental conditions given to an immature seed adhered to a mother plant bring about some modification to its native germination habit. I confirmed that the spectral quality of light could influence the phytochrome system which controlled germination characters of the progeny of lettuce seed ; plants grown in light rich in far-red energies produced light-requiring seed, but those grown in high deficient in far-red energies produced dark germination seed.

  • PDF

IDENTIFICATION AND CHARACTERIZATION OF PHOSPHOLIPASE $A_2$ IN OAT CELLS

  • Min, Youn-Mi;Choi, Eui-Chang;Chae, Quae
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 1995
  • The activity of phospholipase A$_2$ (PLA$_2$) was identified and characterized from cytosolic and membrane fractions of oat cells, respectively. PLA$_2$ activity was determined fluorometrically in the presence of serum albumin using phospholipids labeled at sn-2-acyl position with 10-pyrenyldecanoic acid. When the cell-free extracts of oat tissues were fractionated by ultracentrifugation at 100,000 x g and the PLA$_2$ activity was assayed, we found that most of the PLA$_2$ activity was revealed from the cytoplasmic fraction rather than from the membrane fraction. The activity of cytosolic PLA$_2$ was dependent on Ca$^{2+}$ concentration and the optimum concentration of Ca$^{2+}$ was found to be 100 $\mu$M. It was also found that PLA$_2$ could be translocated toward the membrane site from the cytosol upon increasing Ca$^{2+}$ concentration. These results might suggest that an increased [Ca$^{2+}$]$_i$ by phytochrome action could promote the translocation of the cytosolic PLA$_2$ toward the membrane site.

  • PDF

Growth and Photomorphogenesis of Cucumber Plants under Artificial Solar and High Pressure Sodium Lamp with Additional Far-red Light (태양광 파장 유사 조합광과 원적색광이 추가된 고압나트륨등 하에서의 오이의 생육과 광형태형성)

  • Kang, Woo Hyun;Kim, Jae Woo;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.86-93
    • /
    • 2019
  • Plant growth and morphology are affected by light environments. The morphogenesis and growth of the plants growing in plant factories are different from those grown under sunlight due to the effect of far-red light included in sunlight. The objective of this study was to compare the morphogenesis and growth of cucumber plants grown under artificial sunlight, high pressure sodium lamp (HPS), and HPS with additional far-red light (HPS+FR). The artificial solar (AS) with a spectrum similar to sunlight was manufactured using sulfur plasma lamp, incandescent lamp, and green-reducing optical film. HPS was used as a conventional electrical light source and far-red LEDs were added for HPS+FR. The optical properties of each light source was analyzed. The morphogenesis, growth, and photosynthetic rate were compared in each light source. The ratio of red to far-red lights and phytochrome photostationary state were similar in AS and HPS+FR. There were significant differences in morphology and growth between HPS and HPS+FR, but there were no significant differences between AS and HPS+FR. SPAD was highest in HPS, while photosynthetic rate was higher at AS and HPS. Although the photosynthetic rate in HPS+FR was lower than HPS, the growth was similar in AS. It was because canopy light interception was increased by longer petioles and larger leaf areas induced by FR. It is confirmed that the electrical light with additional far-red light induces similar photomorphogenesis and growth in sunlight spectrum. From the results, we expect that similar results will be obtained by adding far-red light to electrical light sources in plant factories.

Morphological Traits of S598A Sweetpotato as an Industrial Starch Crop

  • Kim, Kyung-Moon;Kim, Ji-Yeon;Kim, Jung-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.422-426
    • /
    • 2009
  • Sweetpotato is one of the important starch crops, current more considered as an industrial crop rather than food because it has higher starch content (over 80% of biomass), it is used for bio resources for industrial area. In this study, we generated S598A (a mutant gene of oat phytochrome A) sweetpotato plant using Agrobacterium-transformation method. Morphological characteristics of S598A plant were compared with the wild type sweetpotato, S598A had darker green leaves, increased chlorophyll content higher than to two-fold, delayed leaf senescence, shorter plant height (60% shorter than that of the wild type), more number of leaves and petioles about 1.8-fold, shorter petiole length (30% shorter), 1.2-fold more branches and 1.6-fold thicker stem diameters. From this study, S598A plants with such phenotypic characteristics might be able to use the solar energy efficiently, to have increased tolerance to biotic and abiotic stresses and finally to increase productivity (not only starch yield but also root biomass yield). S598A sweetpotato lines are under field trials.

Effects of Light on Spinach Glycolate Oxidase Gene Expression

  • Park, Yang-Seo;Jin, Yun-Hae;Kim, Young-Chang;Choi, Jung-Do;Cho, Nam-Jeong
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.271-274
    • /
    • 1995
  • Glycolate oxidase is one of the key enzymes in the pathway of photorespiration. In this study we investigated the effects of light on the expression of the spinach glycolate oxidase gene. Continuous exposure to white light resulted in a gradual increase in the steady-state level of glycolate oxidase mRNA within a time period of 2~24 h in both etiolated and dark-adapted green seedlings. A short white light pulse also increased the level of glycolate oxidase mRNA in etiolated seedlings. The mRNA level reached a maximum at 6~8 h after the pulse and decreased by 24 h after the pulse. The induction patterns of the glycolate oxidase gene by white light appeared similar to those of the rbcS gene, indicating that a common or coordinating regulatory system may be involved in the expression of the glycolate oxidase and rbcS genes. A red light pulse induced an increase in the amount of glycolate oxidase mRNA and this effect was reversed by a subsequent far-red light pulse, suggesting that the expression of the glycolate oxidase gene is regulated by phytochrome.

  • PDF