• Title/Summary/Keyword: Physiological model.

Search Result 847, Processing Time 0.024 seconds

Physiological Characterization of Mono-Cotyledonous Model Plant by Ionizing Irradiation (단자엽 모델 식물의 이온화 에너지원에 따른 생리 활성)

  • Song, Mira;Kim, Sun-Hee;Jang, Duk-Soo;Kang, Si-Yong;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Park, Yong Dae;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The present study has been performed to compare the physiological analysis of monocot model plant (rice) in response to ionizing irradiations (cosmic-ray, gamma-ray, and Ion beam). Ionizing radiations were implanted into monocot model plant (rice) seed. After irradiation, the seeds were planted in the plastic pots for a growth period of one month. Thereafter, the morphological and physiological characteristics including malondealdehyde (MDA) and chlorophyll content, activities of antioxidant enzymes in irradiation samples were investigated. We are confirmed that the activity level of MDA and chlorophyll content were not changed by ionizing irradiation samples. However, the free radical contents were increased in all irradiated plants. And the activities of SOD, POD, and APX were significantly increased by irradiation compared with non-irradiation plant.

Modeling the Multi-Dimensional Phenomenon of Fatiguing by Assessing the Perceived Whole Body Fatigue and Local Muscle Fatigue During Squat Lifting (무릎들기 작업 시 전신피로 감지 수준과 근육 피로도를 활용한 다면적 피로현상 모델링)

  • Ahmad, Imran;Kim, Jung-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • Whole body fatigue detection is an important phenomenon and the factors contributing to whole body fatigue can be controlled if a mathematical model is available for its assessment. This research study aims at developing a model that categorizes whole body exertion into fatigued and non-fatigued states based on physiological and perceived variables. For this purpose, logistic regression was used to categorize the fatigued and non-fatigued subject as dichotomous variable. Normalized mean power frequency of eight muscles from 25 subjects was taken as physiological variable along with the heart rate while Borg scale ratings were taken as perceived variables. The logit function was used to develop the logistic regression model. The coefficients of all the variables were found and significance level was checked. The detection accuracy of the model for fatigued and non-fatigues subjects was 83% and 95% respectively. It was observed that the mean power frequency of anterior deltoid and the Borg scale ratings of upper and lower extremities were significant in predicting the whole body fatigued when evaluated dichotomously (p < 0.05). The findings can help in better understanding of the importance of combined physiological and perceived exertion in designing the rest breaks for workers involved in squat lifting tasks in industrial as well as health sectors.

Artificial Intelligence Based Approaches to the Effect of Cognitive Style and Physiological Phenomena on Judgmental Time series forecasting: A Proposal

  • Park, Hung-Kook;Yoo, Hyeon-Joong;Byoungho Song
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.318-327
    • /
    • 2000
  • Managerial intuition is a well-recognized cognitive ability but still poorly understood for the purpose of developing effective decision support systems. this research investigates whether the differences in accuracy of "time series forecasting" are related to the differences in one's cognitive style, using statistical test The hypotheses established in the research model did not have positive correlation The lack of correlation between "cognitive style and physiological measures" and accuracy in forecasting may be caused by uncontrolled external variable. Thus, further analyses on physiological characteristics and brainwaves are needed. The approaches such as neural network and data mining are proposed.

  • PDF

Survival Prediction of Rats with Hemorrhagic Shocks Using Support Vector Machine (지원벡터기계를 이용한 출혈을 일으킨 흰쥐에서의 생존 예측)

  • Jang, K.H.;Choi, J.L.;Yoo, T.K.;Kwon, M.K.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Hemorrhagic shock is a common cause of death in emergency rooms. Early diagnosis of hemorrhagic shock makes it possible for physicians to treat patients successfully. Therefore, the purpose of this study was to select an optimal survival prediction model using physiological parameters for the two analyzed periods: two and five minutes before and after the bleeding end. We obtained heart rates, mean arterial pressures, respiration rates and temperatures from 45 rats. These physiological parameters were used for the training and testing data sets of survival prediction models using an artificial neural network (ANN) and support vector machine (SVM). We applied a 5-fold cross validation method to avoid over-fitting and to select the optimal survival prediction model. In conclusion, SVM model showed slightly better accuracy than ANN model for survival prediction during the entire analysis period.

Autonomic, Respiratory and Subjective Effects of Long-term Exposure to Aversive Loud Noise : Tonic Effects in Accumulated Stress Model

  • Sohn, Jin-Hun;Sokhadze, Estate;Choi, Sang-Sup;Lee, Kyung-Hwa
    • Science of Emotion and Sensibility
    • /
    • v.2 no.2
    • /
    • pp.37-42
    • /
    • 1999
  • Long-term exposure to loud noise affects performance since it changes arousal level, distracts attention, and also is able to evoke subjective stress accompanied by negative emotional states. The purpose of the study was to analyze dynamics of subjective and physiological variables during a relatively long-lasting (30 min) exposure to white noise (85 dB[A]). Physiological signals were recorded on 15 college students during 30 min of intense auditory stimulation. Autonomic variables, namely skin conductance level , non-specific SCR number, inter-best intervals in ECG, heart rate variability index (HF/LF ratio of HRV), skin temperature, as well as respiration rate were analyzed on 5 min epoch basis. Psychological assessment (subjective rating of stress level) was also repeated every 5 min. Statistical analysis was employed to trace the time course of the dynamics of subjective and autonomic physiological variables and their relationships. Results showed that the intense noise evoked subjective stress as well as associated autonomic nervous system responses. However it was shown that physiological variables endured specific changes in the process of exposure to the loud white noise. Discussed were probable psychophysiological mechanisms mediating reactivity to long-term auditory stimulation of high intensity, namely short-term activation, followed by transient adaptation (with relatively stable autonomic balance) and then a subsequent wave of arousal due to tonic sympathetic dominance.

  • PDF

A Study of the Factors of Synchronization Model on Myocardial Cell Rhythms (심근세포의 동기리듬에 관한 공학적 연구)

  • 박민용
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 1984
  • Biological rhythms are very important phenomena to generate, grow a living thing. However, the origin of rhythms are not disclosed completely until now. Eack myocardial cell has a natural rhythm of itself, and synchronization is happened when two cells are come in contact with each other. In this research, a simple synchronization model has been proposed and studied, refering to the physiological model. The changes of the synchronization rhythms in experimental results are compared with that of the model.

  • PDF

Cochlear Model Analysis for Active Element (능동적 요소를 고려한 코클리어 모델 해석)

  • 최두일;윤태성
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.111-116
    • /
    • 1987
  • In this study, basilar membrane motions and neural tuning responses are analysed with I-dimensional equations for cochlear fluid mechanics and an active cochlear model. The results are as follows. (1) The differences between basilar membrane motions in an active cochlear model and in an passive cochlear model are explained. (2) The basilar membrane motion curves and the neur'at tuning curves which are in accordance with physiological measurements ave obtained. (3) It is proved that the active mechanism makes cochlear highly frequency sensitive.

  • PDF

A Viewer Preference Model Based on Physiological Feedback (CogTV를 위한 생체신호기반 시청자 선호도 모델)

  • Park, Tae-Suh;Kim, Byoung-Hee;Zhang, Byoung-Tak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.316-322
    • /
    • 2014
  • A movie recommendation system is proposed to learn a preference model of a viewer by using multimodal features of a video content and their evoked implicit responses of the viewer in synchronized manner. In this system, facial expression, body posture, and physiological signals are measured to estimate the affective states of the viewer, in accordance with the stimuli consisting of low-level and affective features from video, audio, and text streams. Experimental results show that it is possible to predict arousal response, which is measured by electrodermal activity, of a viewer from auditory and text features in a video stimuli, for estimating interestingness on the video.

The Syncronization Phenomena and Its Model of Myocardial Cells (심근세포의 동기현상과 그 모델화)

  • 박민용;제승정남
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.101-104
    • /
    • 1982
  • Even one embryonic myocardial cell exhibits a spontaneous, periodic beating phenomena. When these cells come in contact with each other, they beat synchronously with a certain period. In this paper, the mechanism of this phenomena is investigated, and the synchronization model is presented. The physiological experimental results are compared with the simulated results of the model.

  • PDF