• Title/Summary/Keyword: Physiological injury

Search Result 305, Processing Time 0.028 seconds

Protective Effects of Mundongcheongpye-eum on Lung Injury Induced by Elastase

  • Nam, Tae-Heung;Park, Yang-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.1042-1052
    • /
    • 2010
  • This study aimed to evaluate the protective effects of Mundongcheongpye-eum (MCE) on elastase-induced lung injury. The extract of MCE was treated to A549 cells and elastase-induced lung injury mice model. Then, various parameters such as cell-based cyto-protective activity and histopathological finding were analyzed. MCE showed a protective effect on elastase-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, collagen and elastin contents, protein level of cyclin B1, Cdc2, and Erk1/2, and gene expression of TNF-${\alpha}$ and IL-$1{\beta}$ in A549 cells. MCE treatment also revealed the protective effect on elastase-induced lung injury in mice model. This effect was evidenced via histopathological finding including immunofluence stains against elastin, collagen, caspase 3, and protein level of cyclin B1, Cdc2, and Erk1/2 in lung tissue. These data suggest that MCE has a pharmaceutical properties on lung injury. This study would provide an scientific evidence for the efficacy of MCE for clinical application to patients with chronic obstructive pulmonary disease.

Regulatory Effects of Samul-tang on Axonal Recovery after Spinal Cord Injury in Rats

  • Lee, Ki-Tae;Kim, Yoon-Sik;Ryu, Ho-Ryong;Jo, Hyun-Kyeng;An, Jung-Jo;Namgung, Uk;Seol, In-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1303-1310
    • /
    • 2006
  • In oriental medicine, Samul-tang (SMT) has been used for the treatment of cardiovascular diseases and neuronal disorders. Here, possible effects of SMT on axonal regeneration after the spinal cord injury were examined. SMT treatment induced increases in regeneration-related proteins GAP-43, cell division cycle 2 (Cdc2) and phospho-Erk1/2 in the peripheral sciatic nerves after crush injury. Increased levels of Cdc2 and phospho-Erk1/2 were observe mostly in the gray matter area and some in the dorsomedial white matter. These increases correlated with increased cell numbers in affected areas. Moreover, axons of corticospinal tract (CST) showed increased sprouting in the injured spinal cord when administrated with SMT compared with saline-treated control. Thus, the present data indicate that SMT may be useful for identifying active components and for therapeutic application toward the treatment of spinal cord disorders after injury.

Factors Influencing Satellite Cell Activity during Skeletal Muscle Development in Avian and Mammalian Species

  • Nierobisz, Lidia S;Mozdziak, Paul E
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.456-464
    • /
    • 2008
  • Avian and mammalian skeletal muscles exhibit a remarkable ability to adjust to physiological stressors induced by growth, exercise, injury and disease. The process of muscle recovery following injury and myonuclear accretion during growth is attributed to a small population of satellite cells located beneath the basal lamina of the myofiber. Several metabolic factors contribute to the activation of satellite cells in response to stress mediated by illness, injury or aging. This review will describe the regenerative properties of satellite cells, the processes of satellite cell activation and highlight the potential role of satellite cells in skeletal muscle growth, tissue engineering and meat production.

The Change of Secretory Activity of the Alveolar Type ll Cell During Acute Alveolar Injury Induced by N-Nitroso-N-Methylurethane

  • Lee, Young-Man;Bang, In-Sook;Lee, Suck-Kang
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 1994
  • In the animal model of acute respiratory distress syndrome (ARDS) induced by N-nitroso-N-methylurethane (NNNMU) the secretory activity of alveolar type H cells during acute alveolar injury was investigated by determining phospholipid and pulmonary surfactant associated proteins in crude surfactant. The mechanism of the secretory change was studied by determination of DNA and RNA levels in the lung tissue. After induction of acute alveolar injury with NNNMU, pulmonary hemorrhage, atelectasis and gross hypertrophy were observed. Seven days after NNNMU treatment the level of total DNA in lung homogenate was increased markedly indicating that a hypertrophy was induced by cellular proliferation. Although the total DNA level increased, the RNA/DNA ratio was gradually decreased after NNNMU treatment. Seven days after NNNMU treatment the RNA/DNA ratio returned to the normal control level. During the acute alveolar injury, phospholipid and surfactant associated proteins were reduced significantly as compared with the control, implying that the secretory activity of alveolar type II cells was altered during acute alveolar injury induced by NNNMU. The protein content in crude surfactant during peak injury(7 days after NNNMU) was decreased significantly but phospholipid/protein ratios were identical in both control and NNNMU treatment groups. SDS-PAGE of proteins in crude pulmonary surfactant showed a decrease in major surfactant associated protein(M.W. 38,000) during acute alveolar injury. The present study may suggest that while alveolar type H cells proliferate markedly, transcription of alveolar type ll cell gene was inhibited by an unknown mechanism such as DNA methylation induced by NNNMU. Such an inhibition of transcriptional activity is thought to be associated with the decreased secretory activity of alveolar type ll cells, which may lead to pulmonary atelectasis and edema during the acute alveolar injury.

  • PDF

Effect of Ursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart

  • Lee, Woo-Yong;Lee, Sun-Mee;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.199-199
    • /
    • 1998
  • In this study, the effects of ursodeoxycholic acid (UDCA) on ischemia/reperfusion injury were investigated on retrograded aortic perfusion model. Hearts from Sprague-Dawley rats were perfused with oxygenated Krebs-Henseleit solution (pH 7.4, 37) on a Langendorff apparatus. After equilibration, hearts were treated with ursodeoxycholic acid 10, 20, 40 and 800 M or vehicle (0.04% DMSO) for 10 min before the onset of ischemia. Following 25 min of global ischemia, ischemic hearts were reperfused and allowed to recover for 30 min. The physiological (i.e. heart rate, left ventricular diastolic pressure, coronary flow and time to contracture formation) and biochemical (lactate dehydrogenase, LDH) endpoints were evaluated. In vehicle group, time to contracture formation (TTC) value was 19.5 min during ischemia, LVDP was 20.8 mmHg at the endpoint of reperfusion and LDH activity in reperfusate was 59.7 U/L. Cardioprotective effects of UDCA following ischemia/reperfusion consisted of a reduced TTC (EC$\_$25/ = 16.10 M), reduced LDH release and enhanced recovery of contractile function during reperfusion. Especially, the treatments of UDCA 80 M remarkably increased LVDP (68.1 mmHg) and reduced LDH release (33.2 U/L). Our findings suggest that UDCA ameliorates ischemia/reperfusion-induced myocardial damage, in agreement with physiological and biochemical parameters.

  • PDF

Comparison of Growth and Physiological Responses in Radish for Assay of Nickel Toxicity -II. Effect of Ni on Physiological Responses in Radish- (무에서 니켈 독성검정을 위한 생육 및 생리반응 비교 -II. 니켈에 의한 무의 생리반응-)

  • Han, Kang-Wan;Cho, Jae-Young
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.293-296
    • /
    • 1996
  • The present study was carried out to investigate the effect of Ni on germination, cell elongation, ${\alpha}-amylase$ activity, contents of chlorophyll and protein in radish were determined in the water culture. As the concentration of Ni was increased in the water culture, germination of radish was 55% by Ni 10 mg/kg and 30% by Ni 20 mg/kg. The ratio of cell elongation injury was 50%, by two days after Ni 20 mg/kg treatment. The injury ratio of ${\alpha}-amylase$ activity was 45% in the same condition and as the time goes on, inhibition of ${\alpha}-amylase$ activity were slightly decreased. Contents of chlorophyll a and b were decreased two days after treatment and chlorophyll a was more inhibited than chlorophyll b. Also changes of the protein contents was slightly decreased. Activity of ${\alpha}-amylase$ was decreased at germination stage, contents of chlorophyll a and b were decreased at growing stage.

  • PDF

Olig2 Transcription Factor in the Developing and Injured Forebrain; Cell Lineage and Glial Development

  • Ono, Katsuhiko;Takebayashi, Hirohide;Ikenaka, Kazuhiro
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.397-401
    • /
    • 2009
  • Olig2 transcription factor is widely expressed throughout the central nervous system; therefore, it is considered to have multiple functions in the developing, mature and injured brain. In this mini-review, we focus on Olig2 in the forebrain (telencephalon and diencephalon) and discuss the functional significance of Olig2 and the differentiation properties of Olig2-expressing progenitors in the development and injured states. Short- and long-term lineage analysis in the developing forebrain elucidated that not all late Olig2+ cells are direct cohorts of early cells and that Olig2 lineage cells differentiate into neurons or glial cells in a region- and stage-dependent manner. Olig2-deficient mice revealed large elimination of oligodendrocyte precursor cells and a decreased number of astrocyte progenitors in the dorsal cortex, whereas no reduction in the number of GABAergic neurons. In addition to Olig2 function in the developing cortex, Olig2 is also reported to be important for glial scar formation after injury. Thus, Olig2 can be essential for glial differentiation during development and after injury.

Effects of Oriental Medicinal Drugs on Axonal Regeneration in the Spinal Cord Neurons

  • An Joung-Jo;NamGung Uk;Seo In-Chan;Kim Yoon-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1640-1646
    • /
    • 2005
  • An oriental medicinal drugs Jahageo (JHG, Hominis placenta) were examined to determine its effects on the responsiveness of central nervous system neurons after injury. We found that JHG was involved in neurite outgrowth of DRG sensory axons. JHG treatment also increased expression of axonal growth-associated protein GAP-43 in DRG sensory neurons after sciatic nerve injury and in the injured spinal cord. JHG treatment during the spinal cord injury increased induction levels of cell division cycle 2 (Cdc2) protein in DRG as well as in the spinal cord. Histochemical investigation showed that induced Cdc2 in the injured spinal cord was found in non-neuronal cells. These results suggest that JHG regulates activities of non-neuronal cells such as oligodendrocyte and astrocyte in responses to spinal cord injury and protects neuronal responsiveness after axonal damage.