• 제목/요약/키워드: Physio-biochemical responses

검색결과 2건 처리시간 0.015초

Klebsiella aerogenes의 카드뮴 적응 및 해독기작에 관련된 생리생화학적인 변화 (Physio-biochemical changes correlated with cadmium adaptation and detoxification mechanism in klebsiella aerogenes)

  • 이기성;송인극;박영식;윤성녀;최영길
    • 미생물학회지
    • /
    • 제28권3호
    • /
    • pp.249-257
    • /
    • 1990
  • In the course of operating the accommodative and detoxifying mechanism against cadmium, its physio-biochemical changes were observed in Klebsiella aerogenes ATCC 10031. Changes of enzyme activity concerned phosphate metabolism, changes of phospholipid composition and in view of energy metabolism the changes of the nucleotide pool were examined. Activities of both alkaline and acid phosphatase were derepressed 4-10 folds under cadmium added cultures. Moreover, production of phospholipid such as lysophosphatidyl choline (LPC), phosphatidyl serine (PS) and phosphatidyl ethanolamone (PE) was increased and uridylate nucleotide pool was increased under Cd-surplus culture. These results i.e. overproduction of phosphatase catalyzing phosphate residue, increase of the production of PE and PS which have a close affinity with cadmium, and indrease of uridylate nucleotide pool used as a carrier of polysaccharide synthesis like bacterial capsule exhibited cellular responses for active defence against Cd-pressure. It was postulated that these phenomena should play another assistant roles in Cd-detoxifing mechanism.

  • PDF

Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrah buffalo

  • Yadav, Brijesh;Pandey, Vijay;Yadav, Sarvajeet;Singh, Yajuvendra;Kumar, Vinod;Sirohi, Rajneesh
    • Journal of Animal Science and Technology
    • /
    • 제58권1호
    • /
    • pp.2.1-2.10
    • /
    • 2016
  • Background: Heat stress adversely affects the physiological and metabolic status, and the productive performance of buffalo. Methods: The present study was conducted to explicate the effect of misting and wallowing cooling strategies during heat stress in lactating Murrah buffalo. The study was conducted for three months (May-July) of which first two months were hot dry and last month was hot humid. Eighteen lactating buffaloes, offered the same basal diet, were blocked by days in milk, milk yield and parity, and then randomly allocated to three treatments: negative control (no cooling), cooling by misting, and cooling by wallowing. Results: The results showed higher (P < 0.05) milk yield in buffaloes of misting and wallowing group compared to control during the experimental period however wallowing was found more (P < 0.05) effective during July (hot humid period). Both the treatments resulted into significant (P < 0.05) reduction in rectal temperature (RT) and respiratory rate (RR) compared to control animals during study period whereas wallowing was found to be effective on pulse rate (PR) only during July. Both treatments were resulted in mitigating the heat stress mediated decrease in packed cell volume (PCV), lymphocytopnoea and neutrophilia whereas decrease in total erythrocyte count (TEC) and monocytes was only mitigated by wallowing. Heat load induced alteration in serum creatinine and sodium concentration was significantly (P < 0.05) ameliorated by misting and wallowing whereas aspartate aminotransferase, alkaline phosphatase and superoxide dismutase activity, and reactive oxygen species concentration could be normalized neither by misting nor by wallowing. The significant (P < 0.05) increment in serum cortisol and prolactin levels observed in June and July period in control animals was significantly (P < 0.05) prevented by misting and wallowing. Conclusions: It can be concluded that misting and wallowing were equally effective in May and June (hot dry period) whereas wallowing was more effective during hot humid period in preventing a decline in milk production and maintaining physiological, metabolic, endocrine and redox homeostasis.