• 제목/요약/키워드: Physics-based character control

검색결과 9건 처리시간 0.02초

Technology Trends for Motion Synthesis and Control of 3D Character

  • Choi, Jong-In
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.19-26
    • /
    • 2019
  • In this study, we study the development and control of motion of 3D character animation and discuss the development direction of technology. Character animation has been developed as a data-based method and a physics-based method. The animation generation technique based on the keyframe method has been made possible by the development of the hardware technology, and the motion capture device has been used. Various techniques for effectively editing the motion data have appeared. At the same time, animation techniques based on physics have emerged, which realistically generate the motion of the character by physically optimized numerical computation. Recently, animation techniques using machine learning have shown new possibilities for creating characters that can be controlled by the user in real time and are expected to be developed in the future.

심층 강화 학습을 이용한 Luxo 캐릭터의 제어 (Luxo character control using deep reinforcement learning)

  • 이정민;이윤상
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제26권4호
    • /
    • pp.1-8
    • /
    • 2020
  • 캐릭터로 하여금 시뮬레이션 내에서 사용자가 원하는 동작을 보이도록 물리 기반 제어기를 만들 수 있다면 주변 환경의 변화와 다른 캐릭터와의 상호작용에 대하여 자연스러운 반응을 보이는 캐릭터 애니메이션을 생성할 수 있다. 최근 심층 강화 학습을 이용해 물리 기반 제어기가 더 안정적이고 다양한 동작을 합성하도록 하는 연구가 다수 이루어져 왔다. 본 논문에서는 다리가 하나 달린 픽사 애니메이션 스튜디오의 마스코트 캐릭터 Luxo를 주어진 목적지까지 뛰어 도착하게 하는 심층 강화학습 모델을 제시한다. 효율적으로 뛰는 동작을 학습하도록 하기 위해서 Luxo의 각 관절의 각도값들을 선형 보간법으로 생성하여 참조 모션을 만들었으며, 캐릭터는 이를 모방하면서 균형을 유지하여 목표한 위치까지 도달하도록 하는 제어 정책(control policy)을 학습한다. 참조 동작을 사용하지 않고 Luxo 동작을 제어하도록 학습된 정책과 비교한 실험 결과, 제안된 방법을 사용하면 사용자가 지정한 위치로 Luxo가 점프하며 이동하는 정책을 더 효율적으로 학습할 수 있었다.

분석적으로 미분 가능한 시스템 동역학을 이용한 온라인 동작 합성 기법 (On-line Motion Synthesis Using Analytically Differentiable System Dynamics)

  • 한다성;노준용;신성용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권3호
    • /
    • pp.133-142
    • /
    • 2019
  • 물리기반 캐릭터 애니메이션에서 궤적 최적화(trajectory optimization) 기법은 캐릭터 동작에 대한 시스템 동역학 모델(system dynamics model)에 기반하여 가까운 최적의 미래 상태를 예측하여 캐릭터의 동작을 자동적으로 생성하는데 널리 사용되어 왔다. 캐릭터와 환경 간의 접촉 현상을 강체 충돌로 다루는 경우 일반적으로 시스템 동역학 모델은 그 수식이 닫힌 형식(closed form)으로 유도되지 못하고 미분이 불가능하다. 따라서 최근까지 많은 연구자들이 접촉 완화(contact smoothing) 기법을 통해 시스템 동역학의 수치적 미분에 기반한 효율적인 궤적 최적화 기법을 발표해 왔다. 하지만 수치적 미분 정보는 분석적 미분과 달리 부정확하기 때문에 궤적 최적화의 안정성에 영향을 미칠 수 있다. 이 문제를 해결하기 위해 본 논문에서는 접촉 완화 모델에 대한 근사화를 통해 시스템 동역학을 분석적으로 미분하여 닫힌 형식의 도함수를 유도하고, 이를 기반으로 사용자의 온라인 입력에 따라 예제 데이터 없이 이족 캐릭터의 동작을 안정적으로 생성하는 예측 제어 기법(model predictive control (MPC))을 제안한다.

물리기반 캐릭터 애니메이션을 위한 반응 모션 생성 기법 (Animating Reactive Motions for Physics-Based Character Animation)

  • 지현호;한정현
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.420-425
    • /
    • 2008
  • 컴퓨터 게임 및 가상현실에서 가상 캐릭터와의 상호작용은 매우 중요한 문제이다. 본 연구는 외력이 인간형 캐릭터에 적용될 때 반응 모션을 생성하는 기법을 제안한다. 이 기법에서는 외력과 인간형 캐릭터의 상태를 고려하여 이동할 다리를 선정하고, 두 다리가 교차하지 않는 범위 내에서 몸의 균형을 유지시켜줄 발의 목적 위치를 결정한다. 다음으로 다리 관절 제어를 통해 받을 들고 제어 메커니즘을 통해 반응 모션을 생성한다. 본 연구는 기존의 방식과는 다르게 미리 캡쳐된 반응 모션 데이터를 사용하지 않으면서도 캐릭터 상함에 맞는 자연스러운 반응 모션의 생성을 보여준다.

  • PDF

확률적 모델예측제어를 이용한 물리기반 제어기 지도 학습 프레임워크 (A Supervised Learning Framework for Physics-based Controllers Using Stochastic Model Predictive Control)

  • 한다성
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 2021
  • 본 논문에서는 확률적 모델예측제어(model predictive control) 기법을 이용하여 예제 동작 데이터가 주어지면 물리 기반 시뮬레이션 환경에서 그 동작을 모방할 수 있는 캐릭터 동작 제어기를 빠르게 학습할 수 있는 간편한 지도 학습(supervised learning) 프레임워크를 제안한다. 제안된 프레임워크는 크게 학습 데이터 생성과 오프라인 학습의 두 컴포넌트로 구성된다. 첫번째 컴포넌트는 예제 동작 데이터가 주어지면 확률적 모델예측제어를 통해 그 동작 데이터를 추적하기 위한 최적 제어기를 캐릭터의 현재 상태로부터 시작하여 가까운 미래 상태까지의 시간 윈도우에 대해 주기적으로 업데이트하면서 그 최적 제어기를 통해 캐릭터의 동작을 확률적으로 제어한다. 이러한 주기적인 최적 제어기의 업데이트와 확률적 제어는 주어진 예제 동작 데이터를 모방하는 동안 캐릭터가 가질 수 있는 다양한 상태들을 효과적으로 탐색하게 하여 지도 학습에 유용한 학습 데이터를 수집할 수 있게 해준다. 이렇게 학습 데이터가 수집되면, 오프라인 학습 컴포넌트에서는 그 수집된 데이터를 정규화 시켜서 데이터에 내제된 크기와 단위의 차이를 조정하고 지도 학습을 통해 제어기를 위한 간단한 구조의 인공 신경망을 학습시킨다. 걷기 동작과 달리기 동작에 대한 실험은 본 논문에서 제안한 학습 프레임워크가 물리 기반 캐릭터 동작 제어기를 빠르고 효과적으로 생성할 수 있음을 보여준다.

자동 타임 워핑에 기반한 온라인 궤적 최적화 (On-line Trajectory Optimization Based on Automatic Time Warping)

  • 한다성;노준용;신성용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권3호
    • /
    • pp.105-113
    • /
    • 2017
  • 본 논문에서는 물리 기반 가상 환경에서 참조 동작을 추적하는 캐릭터 동작을 생성할 때 캐릭터 동작에 대한 최적화와 함께 참조 동작에 대한 타임 워핑(time warping)을 동시에 수행할 수 있는 새로운 온라인 궤적 최적화(trajectory optimization) 기법을 제안한다. 일반적으로 참조 동작에 대한 샘플링 시간이 균일한 간격으로 고정되어 있는 기존의 물리 기반 캐릭터 애니메이션 기법과는 달리, 본 논문에서 제안하는 방법은 캐릭터 동작의 물리적 변화와 함께 샘플링 시간의 변화를 동시에 최적화 시킴으로써 외력에 대해 더욱 효과적으로 대응할 수 있는 참조 동작에 대한 최적의 타임 워핑을 찾아낸다. 이를 위해, 전신 캐릭터(full-body character)의 동역학과 함께 참조 동작에 대한 샘플링 시간의 변화를 함께 고려한 최적 제어 문제(optimal control problem)를 정형화하고 이 문제를 실행 시간에 시간 축을 따라 이동하는 고정된 크기의 시간 윈도우에 대해 반복적으로 풂으로써 캐릭터 동작과 샘플링 시간에 대한 최적 제어 정책(optimal control policy)을 생성하는 모델예측제어(model predictive control) 프레임워크를 제안한다. 실험을 통해, 제안된 프레임워크가 하나의 참조 동작만으로 외력에 대해 강인하게 반응하는 동작을 생성하고, 배경 음악에 따라 리드미컬한 동작을 생성하는데 효과적임을 보여준다.

경로 탐색 기법과 강화학습을 사용한 주먹 지르기동작 생성 기법 (Punching Motion Generation using Reinforcement Learning and Trajectory Search Method)

  • 박현준;최위동;장승호;홍정모
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.969-981
    • /
    • 2018
  • Recent advances in machine learning approaches such as deep neural network and reinforcement learning offer significant performance improvements in generating detailed and varied motions in physically simulated virtual environments. The optimization methods are highly attractive because it allows for less understanding of underlying physics or mechanisms even for high-dimensional subtle control problems. In this paper, we propose an efficient learning method for stochastic policy represented as deep neural networks so that agent can generate various energetic motions adaptively to the changes of tasks and states without losing interactivity and robustness. This strategy could be realized by our novel trajectory search method motivated by the trust region policy optimization method. Our value-based trajectory smoothing technique finds stably learnable trajectories without consulting neural network responses directly. This policy is set as a trust region of the artificial neural network, so that it can learn the desired motion quickly.

상태 표현 방식에 따른 심층 강화 학습 기반 캐릭터 제어기의 학습 성능 비교 (Comparison of learning performance of character controller based on deep reinforcement learning according to state representation)

  • 손채준;권태수;이윤상
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권5호
    • /
    • pp.55-61
    • /
    • 2021
  • 물리 시뮬레이션 기반의 캐릭터 동작 제어 문제를 강화학습을 이용하여 해결해나가는 연구들이 계속해서 진행되고 있다. 강화학습을 사용하여 문제를 풀기 위해서는 네트워크 구조, 하이퍼파라미터 튜닝, 상태(state), 행동(action), 보상(reward)이 문제에 맞게 적절히 설정이 되어야 한다. 많은 연구들에서 다양한 조합으로 상태, 행동, 보상을 정의하였고, 성공적으로 문제에 적용하였다. 상태, 행동, 보상을 정의함에 다양한 조합이 있다보니 학습 성능을 향상시키는 최적의 조합을 찾기 위해서 각각의 요소들이 미치는 영향을 분석하는 연구도 진행되고 있다. 우리는 지금까지 이뤄지지 않았던 상태 표현 방식에 따른 강화학습성능에 미치는 영향을 분석하였다. 첫째로, root attached frame, root aligned frame, projected aligned frame 3가지로 좌표계를 정의하였고, 이에 대해 표현된 상태를 이용하여 강화학습에 미치는 영향을 분석하였다. 둘째로, 상태를 정의 할 때, 관절의 위치, 각도로 다양하게 조합하는 경우에 학습성능에 어떠한 영향을 미치는지 분석하였다.

Generating a Ball Sport Scene in a Virtual Environment

  • Choi, Jongin;Kim, Sookyun;Kim, Sunjeong;Kang, Shinjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5512-5526
    • /
    • 2019
  • In sports video games, especially ball games, motion capture techniques are used to reproduce the ball-driven performances. The amount of motion data needed to create different situations in which athletes exchange balls is bound to increase exponentially with resolution. This paper proposes how avatars in virtual worlds can not only imitate professional athletes in ball games, but also create and edit their actions effectively. First, various ball-handling movements are recorded using motion sensors. We do not really have to control an actual ball; imitating the motions is enough. Next, motion is created by specifying what to pass the ball through, and then making motion to handle the ball in front of the motion sensor. The ball's occupant then passes the ball to the user-specified target through a motion that imitates the user's, and the process is repeated. The method proposed can be used as a convenient user interface for motion based games for players who handle balls.