• Title/Summary/Keyword: Physicochemical exposure

Search Result 65, Processing Time 0.025 seconds

Physicochemical Characterization of PET Fabrics Treated with Chitosan after Exposure to $O_2$ Low Temperature Plasma - Especially by KES evaluation - (저온 플라즈마 처리한 폴리에스테르 직물의 키토산 처리에 따른 물리화학적 특성변화 -KES평가를 중심으로-)

  • Koo Kang;Kim Sam Soo;Park Young Mi;Yu Jae Yeong;Koo Bon Shik;Yoo Seung Chun
    • Textile Coloration and Finishing
    • /
    • v.17 no.5 s.84
    • /
    • pp.26-36
    • /
    • 2005
  • This study was carried to evaluate mechanical characteristics of Poly(ethylene terephthalate) fabrics (by Kawabata evaluation system(KES)) which was systematically treated with $O_2$ low temperature plasma and chitosan acetate solution. Furthermore, surface structure was investigated by SEM, AFM, air permeability and wettability. Tensile energy(WT), shear rigidity(G) and surface roughness(MIU) properties calculated by KES-FB have increased with increasing plasma treatment time, while bending rigidity(G) and energy of compression(WC) value were decreased compared with those of the untreated. SEM photographs showed the identification of chitosan coating but did not confirm the plasma etching structure. Air permeability was decreased according to plasma treatment time with increasing concentrations of chitosan. The water absorption rate made rapid progress by chitosan treatment.

A multiscale numerical simulation approach for chloride diffusion and rebar corrosion with compensation model

  • Tu, Xi;Li, Zhengliang;Chen, Airong;Pan, Zichao
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.471-484
    • /
    • 2018
  • Refined analysis depicting mass transportation and physicochemical reaction and reasonable computing load with acceptable DOFs are the two major challenges of numerical simulation for concrete durability. Mesoscopic numerical simulation for chloride diffusion considering binder, aggregate and interfacial transition zone is unable to be expended to the full structure due to huge number of DOFs. In this paper, a multiscale approach of combining both mesoscopic model including full-graded aggregate and equivalent macroscopic model was introduced. An equivalent conversion of chloride content at the Interfacial Transition Layer (ITL) connecting both models was considered. Feasibility and relative error were discussed by analytical deduction and numerical simulation. Case study clearly showed that larger analysis model in multiscale model expanded the diffusion space of chloride ion and decreased chloride content in front of rebar. Difference for single-scale simulation and multiscale approach was observed. Finally, this paper addressed some worth-noting conclusions about the chloride distribution and rebar corrosion regarding the configuration of rebar placement, rebar diameter, concrete cover and exposure period.

Hydrocarbon-Organic Composite Membranes for Improved Oxidative Stability for PEMFC Applications (연료전지용 탄화수소 전해질 막의 산화안정성 향상을 위한 유기물 복합막의 제조 및 특성 분석)

  • Park, Satbyul;Lee, Hyejin;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.45-49
    • /
    • 2016
  • In order to mitigate oxidative degradation of polymer membrane during fuel cell operation, an organic radical quencher was introduced. Rutin was selected as a radical quencher and mixed with sulfonated poly(arylene ether sulfone) to prepare composite membrane. Physicochemical properties of the composite membranes such as water uptake and proton conductivity were characterized. Hydrogen peroxide exposure experiment, which can mimic accelerated oxidative stability test during fuel cell operation, was adopted to evaluate the oxidative stability of the membranes. The composite membranes containing Rutin showed similar proton conductivity and enhanced oxidative stability compared to pristine ones.

Numerical study of ITZ contribution on diffusion of chloride and induced rebar corrosion: A discussion of three-dimensional multiscale approach

  • Tu, Xi;Pang, Cunjun;Zhou, Xuhong;Chen, Airong
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.69-80
    • /
    • 2019
  • Modeling approach for mesoscopic model of concrete depicting mass transportation and physicochemical reaction is important since there is growing demand for accuracy and computational efficiency of numerical simulation. Mesoscopic numerical simulation considering binder, aggregate and Interfacial Transition Zone (ITZ) generally produces huge number of DOFs, which is inapplicable for full structure. In this paper, a three-dimensional multiscale approach describing three-phase structure of concrete was discussed numerically. An effective approach generating random aggregate in polygon based on checking centroid distance was introduced. Moreover, ITZ elements were built by parallel expanding the surface of aggregates on inner side. By combining mesoscopic model including full-graded aggregate and macroscopic model, cases related to diffusivity and thickness of ITZ, volume fraction and grade of aggregate were studied regarding the consideration of multiscale compensation. Results clearly showed that larger analysis model in multiscale model expanded the diffusion space of chloride ion and decreased chloride content in front of rebar. Finally, this paper addressed some worth-noting conclusions about the chloride distribution and rebar corrosion regarding the configuration of, rebar diameter, concrete cover and exposure period.

Potential health effects of emerging environmental contaminants perfluoroalkyl compounds

  • Lee, Youn Ju
    • Journal of Yeungnam Medical Science
    • /
    • v.35 no.2
    • /
    • pp.156-164
    • /
    • 2018
  • Environmental contaminants are one of the important causal factors for development of various human diseases. In particular, the perinatal period is highly vulnerable to environmental toxicants and resultant dysregulation of fetal development can cause detrimental health outcomes potentially affecting life-long health. Perfluoroalkyl compounds (PFCs), emerging environmental pollutants, are man-made organic molecules, which are widely used in diverse industries and consumer products. PFCs are non-degradable and bioaccumulate in the environment. Importantly, PFCs can be found in cord blood and breast milk as well as in the general population. Due to their physicochemical properties and potential toxicity, many studies have evaluated the health effects of PFCs. This review summarizes the epidemiological and experimental studies addressing the association of PFCs with neurotoxicity and immunotoxicity. While the relationships between PFC levels and changes in neural and immune health are not yet conclusive, accumulative studies provide evidence for positive associations between PFC levels and the incidence of attention deficit hyperactivity disorder and reduced immune response to vaccination both in children and adults. In conclusion, PFCs have the potential to affect human health linked with neurological disorders and immunosuppressive responses. However, our understanding of the molecular mechanism of the effects of PFCs on human health is still in its infancy. Therefore, along with efforts to develop methods to reduce exposure to PFCs, studies on the mode of action of these chemicals are required in the near future.

Characteristics of Exposure Distribution to Hazard Factors in Indoor Swimming Pool Activity Areas in Gwangju (수영장 활동공간 내 유해인자 노출특성 연구)

  • Lee, Youn-Goog;Kim, Nan-Hee;Choi, Young-Seop;Kim, Sun-Jung;Park, Ju-Hyun;Kang, Yu-Mi;Bae, Seok-Jin;Seo, Kye-Won;Kim, Jong-Min
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.2
    • /
    • pp.150-158
    • /
    • 2020
  • Objective: This study is designed to measure the concentration of DBPs (disinfection by-products) in pool water and in air and to estimate the carcinogenic potential through the evaluation of inhalation exposure. Methods: The subjects were six indoor swimming pools with many users in Gwangju. Samples of pool water and indoor air were taken every one month from August 2018 to August 2019 and analyzed for eight swimming pool standards. Three-liter air samples were collected and the VOCs were analyzed using GC/MS directly connected to thermal desorption. Results: pH was 6.8-7.5 and the concentration of free residual chlorine in pool water was 0.40-0.96 ?/ℓ. Physicochemical test items such as KMnO4 consumption and heavy metal items such as Aluminum met existing pool hygiene standards. No VOC materials were detected except for the DBPs. The concentration of THMs in the pool water was 11.05-41.77 ㎍/L and the THMs mainly consist of Chloroform (63-97%) and BDCM (3-31%). The concentration of indoor air THMs is 13.24-32.48 ㎍/㎥ and consists of Chloroform. The results of carcinogenic assessment of chloroform in the indoor swimming pool via inhalation exposure were 2.0 to 6.4 times higher than the 'acceptable risk level' suggested by the US EPA. Conclusions: The concentration of THMs in the pool water is 11.05-41.77 ㎍/L, most of which is chloroform. In addition, the concentration of indoor air THMs is 13.24-32.48 ㎍/㎥. The result of carcinogenic assessment of chloroform was 2.0 to 6.4 times higher than the 'acceptable risk level' suggested by the US EPA.

A Study on the Development of a Health Risk Assessment Method for the Management of the Health Environment of Residents Living Around Areas Affected by Chemical Accidents (화학사고 주변 지역 거주자의 보건환경 관리를 위한 건강위해성 평가 방법 개발에 관한 연구)

  • Park, Sihyun;Park, Sejung;Park, Taehyun;Yoon, Danki;Jung, Jonghyeon;Gang, Sungkyu;Lee, Dongsoo;Seo, Youngrok;An, Yeonsoon;Lee, Cheolmin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.1-17
    • /
    • 2018
  • Objectives: This research is part of a study to be conducted over five years starting from 2017 by the Ministry of Environment on the development of technologies to evaluate the impact of chemical accidents on the human body. Methods: For this research, a five-stage specific study method was developed. Results: In brief, the developed health risk assessment method can be summarized as follows. First, a health risk assessment system was built based on the guidelines set forth by the USA NRC/NAS. Second, based on the disease manifestation theory, the health risk assessment method was divided into 1) a carcinogenic health risk assessment method focused on all carcinogens except non-genotoxic carcinogens and 2) a non-carcinogenic health risk assessment method focused on noncarcinogens including non-genotoxic carcinogens. Third, the detailed contents of the health risk assessment method were developed in four stages(hazard identification, dose-response assessment, exposure assessment, and risk determination) through theoretical consideration of the assessment of the level of health risk related to chemical exposure. Finally, a health risk assessment methodology, classified into stages to address acute, subacute/subchronic, and chronic conditions was developed after considering the physicochemical behavior of hazardous chemicals upon implementation of countermeasures after a chemical accident. Conclusions: A method to evaluate the health risks related to toxic chemicals generated by chemical accidents was developed. This study was performed with the purpose of developing a mathematical health risk assessment method to evaluate the health effects of exposure to hazardous chemicals upon implementation of emergency countermeasures after chemical accidents.

Okadaic Acid Group Toxins: Toxicity, Exposure Routes, and Global Safety Management (오카다익산 군 독소: 독성, 분석법 및 관리 동향)

  • Kyoungah Lee;Namhyun Kim;Jang Kyun Kim;Youn-Jung Kim;Jung Suk Lee;Young-Seok Han
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.409-419
    • /
    • 2023
  • Okadaic acid (OA) group toxins, including OA and its analogs, such as dinophysis toxins (DTXs), have been reported to cause diarrheal shellfish poisoning (DSP). These toxins are primarily produced by dinoflagellates and are accumulated in bivalves. Recently, the presence of Dinophysis sp., a causative alga of DSP, has been reported along the coasts of Korea, posing a potential risk of contamination to domestic seafood and exerting an impact on both the production and consumption of marine products. Accordingly, the European Food Safety Authority (EFSA) and the World Health Organization (WHO) have established standards for the permissible levels of OA group toxins in marine products for safety management. Additionally, in line with international initiatives, the domestic inclusion and regulation of DTX2 among the substances falling under the purview of management outlined by the 2022 diarrheal shellfish toxin standard have been implemented. In this study, we reviewed the physicochemical properties of OA group toxins, their various exposure routes (such as acute toxicity, genotoxicity, reproductive and developmental toxicity), and the relative toxicity factors associated with these toxins. We also performed a comparative assessment of the methods employed for toxin analysis across different countries. Furthermore, we aimed to conduct a broad review of human exposure cases and assess the international guideline for risk management of OA group toxins.

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges (동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향)

  • Subon Ko;Jinho Ahn;Alexandre Fedorov;Giehyeon Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.727-736
    • /
    • 2022
  • Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.

Physicochemical Changes of Chicken Treated with Acetic Acid and Trisodium Phosphate for Retail and Refrigerated Storage (초산과 Trisodium phosphate로 처리한 닭고기의 소매점 판매 및 냉장동안 이화학적 변화)

  • 김창렬;김광현;이재일
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.3
    • /
    • pp.219-225
    • /
    • 2000
  • Physicochemical changes of refrigerated chicken legs treated with acetic acid and trisodium phosphate (TSP) during storage at the temperature of 1$\pm$2。C or 4。C. Chicken (average weight of 500$\pm$30 g) legs were treated with 2.5-10% (w/v) TSP and 0.5-2%(v/v) acetic acid soluions at exposure times of 10 min. pH values of chicken legs treated with 2.5-10% TSP significantly (P<0.05) increased at initial days compared to control, which were consistent with the results of treatments of 5-10% TSP solutions fur storage of 8 days at retail levels. Thiobarbituric acid (TBA) values of chicken legs treated with 2.5-10% TSP or 0.5-2% acetic acid solutions significantly increased from initial days to 4days of storage compared to controls. pH values of chicken legs treated with 0.5-2% acetic acid significantly decreased at initial days compared to control, which were consistent with the results of treatments of 1.5-2% acetic acid solutions for storage of 16 days at 4。C. Chicken legs treated with 0.5-2% acetic acid solutions were a significantly different Hunter color L$^+$ values during storage of 4 and 8 days compared to the controls. Chicken legs treated with 1-2% acetic acid solutions were a significantly different Hunter color a$^+$ values during storage of 16 days compared to the controls. Chicken legs treated with 0.5-2% acetic acid solutions were a significantly different Hunter color b$^+$ values during storage from 4 to 12 days compared to the controls.

  • PDF