• Title/Summary/Keyword: Physical property of blood

Search Result 12, Processing Time 0.019 seconds

Implementation of Urinalysis Service Application based on MobileNetV3 (MobileNetV3 기반 요검사 서비스 어플리케이션 구현)

  • Gi-Jo Park;Seung-Hwan Choi;Kyung-Seok Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.41-46
    • /
    • 2023
  • Human urine is a process of excreting waste products in the blood, and it is easy to collect and contains various substances. Urinalysis is used to check for diseases, health conditions, and urinary tract infections. There are three methods of urinalysis: physical property test, chemical test, and microscopic test, and chemical test results can be easily confirmed using urine test strips. A variety of items can be tested on the urine test strip, through which various diseases can be identified. Recently, with the spread of smart phones, research on reading urine test strips using smart phones is being conducted. There is a method of detecting and reading the color change of a urine test strip using a smartphone. This method uses the RGB values and the color difference formula to discriminate. However, there is a problem in that accuracy is lowered due to various environmental factors. This paper applies a deep learning model to solve this problem. In particular, color discrimination of a urine test strip is improved in a smartphone using a lightweight CNN (Convolutional Neural Networks) model. CNN is a useful model for image recognition and pattern finding, and a lightweight version is also available. Through this, it is possible to operate a deep learning model on a smartphone and extract accurate urine test results. Urine test strips were taken in various environments to prepare deep learning model training images, and a urine test service application was designed using MobileNet V3.

CELL CULTURE STUDIES OF MAREK'S DISEASE ETIOLOGICAL AGENT (조직배양(組織培養)에 의한 Marek 병(病) 병원체(病原體)의 연구(硏究))

  • Kim, Uh-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.9 no.1
    • /
    • pp.23-62
    • /
    • 1969
  • Throughout the studies the following experimental results were obtained and are summarized: 1. Multiplication of agents in primary cell cultures of both GF classical and CR-64 acute strain of Marek's disease infected chicken kidneys was accompanied by the formation of distinct transformed cell foci. This characteristic nature of cell transformation was passaged regularly by addition of dispersed cell from infected cultures to normal chicken kidney cell cultures, and also transferred was the nature of cell transformation to normal chick-embryo liver and neuroglial cell cultures. No cytopathic changes were noticed in inoculated chick-embryo fibroblast cultures. 2. The same cytopathic effects were noticed in normal kidney cell monolayers after the inoculation of whole blood and huffy coat cells derived from both forms of Marek's disease infected chickens. In these cases, however, the number of transformed cell foci appearing was far less than that of uninoculated monolayers prepared directly from the kidneys of Marek's disease infected chickens. 3. The change in cell culture IS regarded as a specific cell transformation focus induced by an oncogenic virus rather than it plaque in slowly progressing cytopathic effect by non-oncogenic viruses, and it is quite similar to RSV focus in chick-embryo fibroblasts in many respects. 4. The infective agent (cell transformable) were extremely cell-associated and could not be separated in an infective state from cells under the experimental conditions. 5. The focus assay of these agents was valid as shown by the high degree of linear correlation (r=0.97 and 0.99) between the relative infected cell concentration (in inoculum) and the transformed cell foci counted. 6. No differences were observed between the GF classical strain and the CR-64 acute strain of Marek's disease as far as cell culture behavior. 7. Characterization of the isolates by physical and chemical treatments, development of internuclear inclusions in Infected cells, and nucleic acid typing by differential stainings and cytochemical treatments indicated that the natures of these cell transformation agents closely resemble to those described fer the group B herpes viruses. 8. Susceptible chicks inoculated with infected kidney tissue culture cells developed specific lesions of Marek's disease, and in a case of prolonged observation after inoculation (5 weeks) the birds developed clinical symptoms and gross lesions of Marek's disease. Kidney cell cultures prepared from those inoculated birds and sacrificed showed a superior recovery of cell transformation property by formation of distinct foci. 9. Electron microscopic study of infected kidney culture cells (GF agent) by negative staining technique revealed virus particles furnishing the properties of herpes viruses. The particle was measured about $100m{\mu}$ and, so far, no herpes virus envelop has been seen from these preparations. 10. No relationship of both isolates to avian leukosis/sarcoma group viruses and PPLO was observed.

  • PDF