• Title/Summary/Keyword: Physical microhabitat factors

Search Result 3, Processing Time 0.021 seconds

Classification of Microhabitats based on Habitat Orientation Groups of Benthic Macroinvertebrate Communities (저서성 대형무척추동물의 서식 특성에 따른 미소서식처 유형화)

  • Kim, Jungwoo;Kim, Ah Reum;Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.728-735
    • /
    • 2017
  • Many restoration projects are underway to revive disturbed streams. In order to achieve successful stream restoration, a variety of microhabitats should be created to promote biological diversity. Research on biological classification of microhabitats is essential for biological diversity. However, research on classification using only physical environmental factors has been carried out. The purpose of this study is to classify and quantify the microhabitat of the stream by using macroinvertebrates systematically. In this study, eight wadeable streams and four non-wadeable streams were surveyed to identify the benthic macroinvertebrates in these various microhabitats. Among the physical environmental factors (current velocity, water depth, substrate), the particle size of the substrate was the most influential factor in the emergence of the Habitat Orientaion Groups. Among the HOGs, clinger and burrower were highly correlated with physical environment factors and showed the opposite tendency. The distribution of clinger and burrower according to the physical environmental factors showed two tendencies based on the current velocity (0.3 m/s) and water depth (0.4 m). In addition, the particle size of the substrate showed three trends (${\leq}-5.0$, -5.0 < mean diameter ${\leq}-2.0$, > -2.0). Based on the abundance tendency of these two HOGs, the microhabitats were classified into nine types, from a eupotamic microhabitat to a lentic microhabitat. Classification of the microhabitats using HOGs can be employed for creating microhabitats to promote biological diversity in future stream restoration plans.

Estimation on Physical Microhabitat Suitability for Species of the Mayfly Genus Ephemera (Ephemeroptera: Ephemeridae) Using Probability Distribution Models (확률분포모형을 이용한 하루살이속(Ephemera) 종들의 물리적 미소서식처 적합도 평가)

  • Dongsoo Kong;Jeaha Song
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.5
    • /
    • pp.396-412
    • /
    • 2023
  • Species from the mayfly genus Ephemera (Order Ephemeroptera) was assessed for their physical microhabitat suitability (namely E. strigata, E. separigata, and E. orientalis-sachalinensis). Probability distribution models (Exponential, Normal, Lognormal, Logistic, Weibull, Gamma, Beta, and Gumbel) based on the data collected from 23,957 sampling units of 6,787 sites in Korea from 2010 to 2021 were used. Mode and standard deviation calculated from the best-fitting models to species distribution along a water depth gradient were 265 cm and 159 cm in E. orientalis-sachalinensis; 10 cm and 83 cm in E. strigata; 20 cm and 15 cm in E. separigata, respectively. The current velocity gradient was 22 cm/s and 40 cm/s in E. orientalis-sachalinensis; 60 cm/s and 53 cm/s in E. strigata; 82 cm/s and 25 cm/s in E. separigata, respectively. The mean diameter (phi scale) of substrate grains were -3.6 and 2.2 in E. orientalis-sachalinensis; -7.4 and 1.5 in E. strigata; -5.8 and 0.9 in E. separigata, respectively. Habitat suitability range of E. orientalis-sachalinensis was estimated to be 161~369 cm (water depth), 5~44 cm/s (current velocity), -5.2~-2.0 (mean diameter); 3~34 cm (water depth), 36~94 cm/s (current velocity), -8.1~-6.3 (mean diameter) for E. strigata; 12~32 cm (water depth), 63~96 cm/s (current velocity), -6.3~-5.2 (mean diameter) for E. separigata. In relative comparison, E. orientalis-sachalinensis was estimated to be rheophobic, eurybathophilic, and eurypsephophilic; E. strigata to be euryrheophilic, bathophobic, and lithophilic; E. separigata to be stenomesorheophilic, stenobathophobic, stenolithophilic.

Physical Habitat Characteristics of the Endangered Macroinvertebrate Koreoleptoxis nodifila (Martens, 1886) (Mollusca, Gastropoda) in South Korea (한국산 멸종위기 무척추동물 염주알다슬기 (연체동물문, 복족강)의 물리적 서식처 특성 )

  • Jin-Young Kim;Ye ji Kim;Ah Reum Kim;In-Seong Yoo;Hwang Kim;Dongsoo Kong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.145-155
    • /
    • 2022
  • Koreoleptoxis nodifila (Martens, 1886) is an endangered species only living in the central and north streams of South Korea. However, there is a lack of information on physical habitat characteristics of K. nodifila. We aimed to determine preference ranges for water depth, current velocity, streambed substrate of K. nodifila. The weibull model was used to estimate the habitat suitability based on distribution of individual abundance by physical factors. Optimal depth preferences ranged from 0.53~17.17 cm, current preferences ranged from 48.40~81.03 cm s-1 and substrate (𝜱m) preferences ranged from -4.36~ -2.26. Median values of central tendency were determined as follows: water depth 16.73 cm, current velocity 65.23 cm s-1, substrate -3.51. Mean values of central tendency were determined as follows: water depth 21.32 cm, current velocity 65.65 cm s-1, substrate -3.63. Mode values of central tendency were determined as follows: water depth 5.17 cm, current velocity 64.77 cm s-1, substrate -3.24. Based on the habitat suitability analysis, the microhabitat types of K. nodifila were determined as riffle and coarse-grained streambed.