• 제목/요약/키워드: Physical and Mechanical Properties

검색결과 1,953건 처리시간 0.028초

노출시간과 열강도에 따른 복사열 노출후의 소방보호복의 물리적 특성과 역학적 특성변화 (Changes of Physical and Mechanical Properties of Firefighter Protective Clothing After Radiant Heat Exposure)

  • 유화숙
    • 한국의류학회지
    • /
    • 제23권6호
    • /
    • pp.853-863
    • /
    • 1999
  • the change of physical properties (thickness, weight, air permeability) and mechanical properties(abrasion resistance breaking load and displacement) of samples were determined after heat exposure by a RPP tester. The effect of exposure time and heat flux intensity on the changes and the relationship between physical properties and mechanical properties were investigated. FR treated cotton Kevlar/PBI and Nomex with different structureal characteristics were chosen for specimens. The changes of physical properties and mechanical properties were calculated based on their initial values before heat exposure. The longer exposure time and the high heat flux intensity the more changes of those properties. Heat flux intensity was more effective on the changes, The showed to be affected by an interplay of shrinkage and pyrolysis products loss. The changes of thickness and abrasion resistance showed to be higher for plain weave fabric and those of air permeabiliyt and breaking load and displacement for twill weave fabric. While FR treated cotton which have high RPP value experienced serious and detrimental changes after heat exposure Kevlar/PBI which has low RPP value showed no high changes. In conclusion it could be confirmed that when total performance of a protective clothing is estimated retention capability of physical and mechanical properties after heat exposure as well as RPP value must be considered.

  • PDF

Physical and Mechanical Properties of Methyl Methacrylate-Impregnated Wood from Three Fast-Growing Tropical Tree Species

  • Hadi, Yusuf Sudo;Massijaya, Muh Yusram;Zaini, Lukmanul Hakim;Pari, Rohmah
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권3호
    • /
    • pp.324-335
    • /
    • 2019
  • Timber from plantation forests has inferior physical and mechanical properties compared to timber from natural forest because it is mostly from fast-growing tree species that are cut at a young age. Filling cell voids with methyl methacrylate (MMA) can improve the wood properties. The purpose of this study was to determine the physical and mechanical properties of MMA-impregnated wood from three fast-growing wood species, namely jabon (Anthocephalus cadamba (Roxb.) Miq.), mangium (Acacia mangium Willd) and pine (Pinus merkusii Jungh. & de Vriese). Wood samples were either immersed in MMA monomer or impregnated with it and then heated to induce the polymerization process. Jabon, which was the lowest density wood, had the highest polymer loading, followed by pine and mangium. The physical and mechanical properties of samples were affected by wood species and the presence of MMA, with higher-density wood having better properties than wood with a lower density. Physical and mechanical properties of MMA wood were enhanced compared to untreated wood. Furthermore, the impregnation process was better than immersion process resulting the physical and mechanical properties. Based on MOR values, the MMA woods were one strength class higher compared to untreated wood with regard to Strength Classification of Indonesian Wood.

Furfurylation Effects on Discoloration and Physical-Mechanical Properties of Wood from Tropical Plantation Forests

  • HADI, Yusuf Sudo;HERLIYANA, Elis Nina;PARI, Gustan;PARI, Rohmah;ABDILLAH, Imam Busyra
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권1호
    • /
    • pp.46-58
    • /
    • 2022
  • Wood from tropical plantation forests has lower physical and mechanical properties than mature wood. Furfuryl alcohol (FA) impregnation into the wood could help to enhance hydrophobic properties, dimensional stability, and structural strength. Furfurylation was applied to specimens of the following four fast-growing tropical wood species: jabon (Anthocephalus cadamba), sengon (Falcataria moluccana), mangium (Acacia mangium), and pine (Pinus merkusii). The discoloration and physical and mechanical properties were subsequently measured, and the results showed that furfurylated wood had a darker color and better physical and mechanical properties than untreated wood. Specifically, the furfurylated wood had higher density, modulus of elasticity, and hardness and lower moisture content, water absorption, swelling, and shrinkage. The furfurylation significantly enhanced physical and mechanical properties.

분말상 탄닌수지로 제조한 PB의 물리.기계적 특성 (Physical and Mechanical Properties of Particleboard made with Powdered Tannin Adhesives)

  • 강석구;이화형
    • 한국가구학회지
    • /
    • 제14권2호
    • /
    • pp.1-12
    • /
    • 2003
  • This study was carried out to determine the mechanical and physical properties of particle boards glued with condensed tannin (Wattle Tannin) powder that was single-molecule phenolic compounds like powdered phenolic resin. Our findings are; 1) It is necessary to spray water on the chip surfaces for effective application of powdered -form tannin resin. It shows that the best and optimum mat moisture increase is 14% of water spray on the surface of chips for developing PB properties. 2) In general, for both liquid and powdered tannin adhesives, their physical and mechanical properties has been proportional to the increase of resin level. But, the most efficient addition ratio is 16% of resin on dry basis. Specially, it is found that the resin level influences on the amount of free formaldehyde emission. The higher the resin level is, the lower the emission is. These phenomena seem to result from the increase of hexamine or formaline in the adhesives used as a hardener, that reduce the free-formaldehyde amount by reaction of tannin of poly-molecule and water. 3) The optimum condition for manufacturing PBs is the condition of hexamine of 5% and formaline of 6% in mechanical and physical properties. Hexamine is superior to formaline in mechanical and physical properties along with the control of the free formaldehyde emission amount. The result of NaOH's addition is insignificant in all experiments of both mechanical and physical properties.

  • PDF

Prediction of the mechanical properties of granites under tension using DM techniques

  • Martins, Francisco F.;Vasconcelos, Graca;Miranda, Tiago
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.631-643
    • /
    • 2018
  • The estimation of the strength and other mechanical parameters characterizing the tensile behavior of granites can play an important role in civil engineering tasks such as design, construction, rehabilitation and repair of existing structures. The purpose of this paper is to apply data mining techniques, such as multiple regression (MR), artificial neural networks (ANN) and support vector machines (SVM) to estimate the mechanical properties of granites. In a first phase, the mechanical parameters defining the complete tensile behavior are estimated based on the tensile strength. In a second phase, the estimation of the mechanical properties is carried out from different combination of the physical properties (ultrasonic pulse velocity, porosity and density). It was observed that the estimation of the mechanical properties can be optimized by combining different physical properties. Besides, it was seen that artificial neural networks and support vector machines performed better than multiple regression model.

Physical and Mechanical Properties of Wood Fiber-Polypropylene Fiber Composite Panel

  • Kim, Jee-Woong;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권3호
    • /
    • pp.36-46
    • /
    • 2001
  • This study was to find a way of reusing wood and plastic wastes, which considered as a troublesome problem to be solved in this age of mass production and consumption, in manufacturing wood fiber-polypropylene fiber composite panel. And the feasibility of this composite panel as a substitute for existing headliner base panel of automobile was also discussed, especially based on physical and mechanical performance. Nonwoven web composite panels were made from wood fiber and polypropylene fiber formulations of 50 : 50, 60 : 40, and 70 : 30, based on oven-dry weight, with densities of 0.4, 0.5, 0.6, and 0.7 g/$cm^3$. At the same density levels, control fiberboards were also manufactured for performance comparison with the composite panels. Their physical and mechanical properties were tested according to ASTM D 1037-93. To elucidate thickness swelling mechanism of composite panel through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. Test results in this study showed that nonwoven web composite panel from wood fibers and polypropylene fibers had superior physical and mechanical properties to control fiberboard. In the physical properties of composite panel, dimensional stability improved as the content of polypropylene fiber increased, and the formulation of wood fiber and polypropylene fiber was considered to be a significant factor in the physical properties. Water absorption decreased but thickness swelling slightly increased with the increase of panel density. In the mechanical properties of composite panel, the bending modulus of rupture (MOR) and modulus of elasticity (MOE) appeared to improve with the increase of panel density under all the tested conditions of dry, heated, and wet. The formulation of wood fiber and polypropylene fiber was considered not to be a significant factor in the mechanical properties. All the bending MOR values under the dry, heated, and wet conditions met the requirements in the existing headliner base panel of resin felt.

  • PDF

북양산(北洋産) 주요(主要) 침(針), 활엽수재(闊葉樹材)의 재질(材質)에 관(關)한 연구(硏究) (A Study on the Physical and Mechanical Properties of Some Major Northern Soft woods and Hardwoods)

  • 박종수;김수창
    • Journal of Forest and Environmental Science
    • /
    • 제9권1호
    • /
    • pp.10-18
    • /
    • 1993
  • 북양산(北洋産) 주요(主要) 침(針), 활엽수재(闊葉樹材)의 물리적(物理的) 성질(性質)(밀도(密屠), 만재율(晩材率), 공권율(孔圈率), 평균년수폭(平均年輸幅))과 역학적(力學的) 성질(性質)(종압축강도, 횡압축강도, 전단강도에 관하여 연구(硏究) 조사하였다. 이 실험(實驗)의 연구(硏究) 결과(結果)는 다음과 같다. 밀도(密度)와 만재율(晩材率)은 물리적(物理的) 역학적(力學的) 성질(性質)과 밀접(密接)한 관계(關係)를 나타낸 반면, 공권율(孔圈率)과 평균년수폭(平均年輸幅)은 물리적(物理的) 역학적(力學的) 성질(性質)과 거의 관계(關係)가 없음을 나타내었다.

  • PDF

구성형태(構成形態)와 구성비율별(構成比率別)로 제조(製造)한 슬러지-파티클보드의 물리적(物理的) 및 기계적(機械的) 성질(性質) (Physical and Mechanical Properties of Sludge-Particle Board Manufactured by Composition Types and Composition Ratios from Mixed or Layered Paper Sludge and Wood Particle)

  • 이필우;윤형운
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권1호
    • /
    • pp.17-26
    • /
    • 1996
  • This research was accomplished to evaluate possibility of using paper sludge for the raw materials of wood based panel products. The experimental panels were manufactured by four mixed ratios, the proportion of paper sludge to wood particle: 20:80, 30:70, 40:60, 50:50% (oven dry weight basis) and by three composition types, sludge-particle mixed board, three layered sludge-particle board and three layered particle board. They were tested mechanical (bending strength and internal bond) and physical properties (water absorption, thickness swelling and linear expansion). From the results they were shown that bending strength of mixed and three layered sludge-particle board were decreased with increasing of composition ratios of sludge. And the mechanical and physical properties of the boards of three layered composition types have superior to those of mixed composition type. Although composition ratios of sludge increased, the internal bond strength and dimensional stability of sludge-particle board not decreased quantitatively. We concluded that the mechanical and physical properties of three layered sludge-particle board were similar w those of three layered particle-board (control) made by our laboratory design. Therefore, it was recognized that paper sludge can be used as potential raw material in particle-board manufacturing industry.

  • PDF

The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research

  • Arani, Ali Ghorbanpour;Farazin, Ashkan;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • 제10권4호
    • /
    • pp.327-337
    • /
    • 2021
  • In this review, composite structures are used for many industries for at least four decades. Polymeric composites are one of the important structures in the aerospace and aviation industry because of their high strength and low weight. In this comprehensive review, mechanical behaviors, physical and mechanical properties of polymeric composites, different types of reinforcements, different methods to fabricate polymeric composites, historical structural composite materials for aviation and aerospace industries, and also different methods for the characterization are reported. How to use various methods of composite preparation using different nanofillers as reinforcements and its effect on the physical properties and mechanical behavior of composites are discussed as well.

Physical and Mechanical Properties of Local Styrax Woods from North Tapanuli in Indonesia

  • Iswanto, Apri Heri;Susilowati, Arida;Azhar, Irawati;Riswan, Riswan;Supriyanto, Supriyanto;Tarigan, Joel Elpinta;Fatriasari, Widya
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권4호
    • /
    • pp.539-550
    • /
    • 2016
  • The objective of this research was to evaluate physical and mechanical properties of three species of Styrax woods from North Tapanuli in Indonesia. The woods were more than 15 years old. Physical properties such as specific gravity, green moisture content, and volume shrinkage were determined by the procedures based on BS-373 standard for small clear specimen. Furthermore, mechanical properties, including modulus of rupture, modulus of elasticity, compression parallel to grain and hardness were also tested according to the standard. Along the stem direction, the edge section had better properties compared with those near the pith section. And the base section had also better properties than upper section. Based on the specific gravity, all of the Styrax woods in this research were classified into III-IV strength classes. A good dimensional stability was demonstrated by the value of the tangential and radial ratio which reached one. With the consideration of the mechanical properties, Styrax woods were suitable use for raw materials of light construction, furniture and handy craft.