• Title/Summary/Keyword: Physical Properties Analysis

Search Result 2,061, Processing Time 0.036 seconds

Mechanical and Physical Properties of Asbestos-Free Cement Composite (무석면 시멘트 복합체의 물리.역학적 특성(구조 및 재료 \circled2))

  • 원종필;배동인
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.290-295
    • /
    • 2000
  • Mechanical and physical properties of wood fiber for the reinforcement of thin-sheet cement products were investigated. The slurry-dewatering method followed by pressing was used to manufacture the products. Mechanical and physical properties of wood fiber reinforced cement composites were assessed with flexural strength, density, and water absorption. The results obtained in this study were analyzed statistically using the analysis of variance in order to derive statistically reliable conclusions.

  • PDF

A Study on the Physical Properties of Insulation Materials according to the Period of Building Construction (건축물 준공년수 경과에 따른 단열재의 물성변화에 관한 연구)

  • Kim, Hyun-Jin;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.92-93
    • /
    • 2018
  • This study analyzed the physical properties of insulation materials upon completion of building completion years and found the suitability of the current energy performance analysis methodology to apply the insulation specified in the design drawings to the same thermal conductivity values as the new materials.

  • PDF

Analysis of Asphalt Cement Aging Characteristics Using Chromatogram (크로마토그램을 이용한 아스팔트시멘트의 노화형질 분석)

  • 김광우;연규석;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.1-4
    • /
    • 1991
  • Relationship between againg and characteristic change of asphalt is not well known through asphalt rheolopy. Therefore, this study was conducted to evaluate characteristic change of asphalt cement due to againg based on experimental results of chromatogram and selected physical properties. Currently, three virgin asphalt cements were tested for physical properties and chromatograms before and after artificially conditioning for againg. Results in the current study showed that againg caused significant changes of physical properties and increase of larger size molecules and approximately corresponding reduction of smaller size molecule in asphalt cement molecular size distribution.

  • PDF

Growth Performance of Sedum reflexum and Physical Properties of Extensive Green Roof Growing Media (경량형 옥상녹화 식재기반의 물리성과 레플렉숨 생육특성)

  • Li, Hong;Kang, Tai-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.6
    • /
    • pp.50-59
    • /
    • 2014
  • This experiment was performed in order to study the relationship between physical properties of soil and the growth characteristics of Sedum reflexum. A correlation analysis and multiple regression analysis were performed using SPSS Ver 19.0 for Windows. The multiple regression analysis results of soil physical properties and growth characteristics were as follows. The regression equation: The length=$.993-14.070^*$(soil bulk density)+$.233^*$(solid phase)+$.038^*$(liquid phase)+$.068^*$(permeability). The significance of soil bulk density and solid phase was great. The width=$2.931-33.925^*$(soil bulk density)+$.566^*$(solid phase)+$.206^*$(liquid phase)+$.027^*$(permeability). The significance of soil bulk density and solid phase was great. The wet weight and dry weight of the upper and lower and soil physical properties did not have a direct relationship.

Analysis on the Physical Property of Nylon High Tenacity Coarse Yarn and Fabric for Military and Technical Textiles (군용 및 산자용 나일론 고강력 태섬사 및 후직물의 물성 분석)

  • Kim, Seung-Jin;Kim, Sang-Ryong;Lee, Do-Hyun;Choi, Woo-Hyuk
    • Textile Coloration and Finishing
    • /
    • v.21 no.3
    • /
    • pp.43-48
    • /
    • 2009
  • This paper surveys the mechanical properties of nylon high tenacity coarse yarn and fabric for military and technical textiles. For this purpose, 6 kinds of yarns and 2 kinds of fabrics are prepared. The yarn physical properties such as yarn count, thermal shrinkages, and tensile properties are measured and discussed with the characteristics of the domestic and imported yarns. And, the physical and mechanical properties of these fabrics are also measured and discussed with the usage of these fabrics in the military and technical textiles fields. Hereafter, the differences of physical properties between domestic and foreign yarn specimens for high functional military and technical fabrics are estimated through this study.

Physical Characteristics of Small Space Objects at High Orbits Based on Optical Methods

  • El-Hameed, Afaf M. Abd;Attia, Gamal F.;Abdel-Aziz, Yehia
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Optical observation is one of the most common techniques used for characterizing the physical properties of unknown objects and debris in space. This research presents measurements and properties of the new object 96019 from ground-based optical methods. Optical observations of this small object were performed using a charge-coupled device (CCD) camera and the Santel-500 telescope at the Zvenigorod Observatory. The orbital elements and physical properties of this object, such as area-to-mass ratio, have been determined. The results show that this small object has a low area-to-mass ratio, between 0.009 and $0.12m^2/kg$. The light curve of object 96019 is given: Over the time intervals, variations in brightness are analyzed and the maximum brightness was found to be 12.4 magnitudes. The observational results show that, this object brightens by about three magnitudes over a time span of three minutes. Based on these observations, the characteristics and physical properties of this object are discussed.

Thermal post-buckling analysis of a laminated composite beam

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.337-346
    • /
    • 2018
  • The purpose of this study is to investigate thermal post-buckling analysis of a laminated composite beam subjected under uniform temperature rising with temperature dependent physical properties. The beam is pinned at both ends and immovable ends. Under temperature rising, thermal buckling and post-buckling phenomena occurs with immovable ends of the beam. In the nonlinear kinematic model of the post-buckling problem, total Lagrangian approach is used in conjunction with the Timoshenko beam theory. Also, material properties of the laminated composite beam are temperature dependent: that is the coefficients of the governing equations are not constant. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The effects of the fibber orientation angles, the stacking sequence of laminates and temperature rising on the post-buckling deflections, configurations and critical buckling temperatures of the composite laminated beam are illustrated and discussed in the numerical results. Also, the differences between temperature dependent and independent physical properties are investigated for post-buckling responses of laminated composite beams.

Nonlinear thermal displacements of laminated composite beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.691-705
    • /
    • 2018
  • In this paper, nonlinear displacements of laminated composite beams are investigated under non-uniform temperature rising with temperature dependent physical properties. Total Lagrangian approach is used in conjunction with the Timoshenko beam theory for nonlinear kinematic model. Material properties of the laminated composite beam are temperature dependent. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The distinctive feature of this study is nonlinear thermal analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. In this study, the differences between temperature dependent and independent physical properties are investigated for laminated composite beams for nonlinear case. Effects of fiber orientation angles, the stacking sequence of laminates and temperature on the nonlinear displacements are examined and discussed in detail.

The simple measurement of physical properties and stress fringe value for photo-elastic orthotropic material (광탄성 직교이방성체의 물성치와 응력 프린지치 간이 측정법)

  • 황재석;이광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.23-36
    • /
    • 1990
  • The various composite materials have been developed with the development of high strength material and the increasement of composite material usage. Therefore many researchers have studied about the stress analysis and the fracture mechanics for composite materials through the experiment or the theory. Among the experimental methods, the photoelastic experiments have been used for the stress analysis of the isotropic structures or the anisotropic structures. To analyze the stresses in the orthotropic material with photoelastic experiment, the basic physical properties ( $E_{L}$, $E_{T}$, $G_{LT}$ , .nu.$_{LT}$ ) and the basic stress fringe values ( $f_{L}$, $f_{T}$, $f_{LT}$ )are needed, therefore the relationships between the basic physical properties and the stress fringe values were derived in this paper. When the stress fringe value is very large, it was assured by the experiment that the relationships are established both in the room temperature and in the high temperature (T = 130.deg. C). Therefore the basic physical properties can be obtained from the relationships by measuring stress fringe values instead of measuring the basic physical properties.rties.

Determination of Physical Dimensions of ${\mu}$ Cassiopeiae

  • Bach, Kie-Hunn;Kang, Won-Seok
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.35.1-35.1
    • /
    • 2010
  • Using the spectroscopic analysis and the theoretical modeling, physical properties of the nearby astrometric binary $\mu$ Cas have been determined. In spite of the well-defined parallax and astrometric orbit, there has been a chronic mass ratio problem between components. Recently, the radius of the primary component has been detected from the optical interferometric observation of the CHARA array. Using the high resolution spectroscopic analysis, we found that $\mu$ Cas have $\alpha$-enhanced chemical composition with respect to the scaled solar abundance by a factor of two. Combining our abundance analysis with recently determined physical properties, the consistent models for $\mu$ Cas have been constructed within the frame work of standard stellar theory. Through a statistical minimization between theoretical model grids, a reliable set of physical dimensions has been defined. Furthermore, the mode oscillation frequency of the best model has been calculated.

  • PDF