• Title/Summary/Keyword: Physical Network Approach

Search Result 206, Processing Time 0.031 seconds

Modeling the Selectivity of the Cod-end of a Trawl Using Chaotic Fish Behavior and Neural Networks

  • Kim, Yong-Hae;Wardle, Clement S.
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Using empirical data of fish performance and physiological limits as well as physical stimuli and environmental data, a cod-end selectivity model based on a chaotic behavior model using the psycho-hydraulic wheel and neural-network approach was established to predict fish escape or herding responses in trawl and cod-end designs. Fish responses in the cod-end were categorized as escape or herding reactions based on their relative positions and reactions to the net wall. Fish movements were regulated by three factors: escape time, a visual looming effect, and an index of body girth-mesh size. The model was applied to haddock in a North Sea bottom trawl including frequencies of movement components, swimming speed, angular velocity, distance to net wall, and the caught-fish ratio; simulation results were similar to field observations. The ratio of retained fish in the cod-end was limited to 37-95% by optomotor coefficient values of 0.3-1.0 and to 13-67% by looming coefficient values of 0.1-1.0. The selectivity curves generated by this model were sensitive to changes in mesh size, towing speed, mesh type, and mesh shape.

The Influence of Learning Styles on a Model of IoT-based Inclusive Education and Its Architecture

  • Sayassatov, Dulan;Cho, Namjae
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.5
    • /
    • pp.27-39
    • /
    • 2019
  • The Internet of Things (IoT) is a new paradigm that is revolutionizing computing. It is intended that all objects around us will be connected to the network, providing "anytime, anywhere" access to information. This study introduces IoT with Kolb's learning style in order to enhance the learning experience especially for inclusive education for primary and secondary schools where delivery of knowledge is not limited to physical, cognitive disabilities, human diversity with respect to ability, language, culture, gender, age and of other forms of human differences. The article also emphasizes the role of learning style as a discovery process that incorporates the characteristics of problem solving and learning. Kolb's Learning Style was chosen as it is widely used in research and in practical information systems applications. A consistent pattern of finding emerges by using a combination of Kolb's learning style and internet of things where specific individual differences, learning approach differences and IoT application differences are taken as a main research framework. Further several suggestions were made by using this combination to IoT architecture and smart environment of internet of things. Based on these suggestions, future research directions are proposed.

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing

  • Ko, Jae-Heung;Kim, Hyun-Tae;Han, Kyung-Hwan
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose and lignin surrounds the cellulose component of the plant's cell wall in order to protect the cell from enzymatic attacks. Such resistance, along with the variability seen in the proportions of the major components of the mixture, presents process design and operating challenges to the bioconversion of lignocellulosic biomass to fuel. Expanding bioenergy production to the commercial scale will require a significant improvement in the growth of feedstock as well as in its quality. Plant biotechnology offers an efficient means to create "targeted" changes in the chemical and physical properties of the resulting biomass through pathway-specific manipulation of metabolisms. The successful use of the genetic engineering approach largely depends on the development of two enabling tools: (1) the discovery of regulatory genes involved in key pathways that determine the quantity and quality of the biomass, and (2) utility promoters that can drive the expression of the introduced genes in a highly controlled manner spatially and/or temporally. In this review, we summarize the current understanding of the transcriptional regulatory network that controls secondary wall biosynthesis and discuss experimental approaches to developing-xylem-specific utility promoters.

VRML image overlay method for Robot's Self-Localization (VRML 영상오버레이기법을 이용한 로봇의 Self-Localization)

  • Sohn, Eun-Ho;Kwon, Bang-Hyun;Kim, Young-Chul;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.318-320
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localitzation technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

  • PDF

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.

Maximum Node Interconnection by a Given Sum of Euclidean Edge Lengths

  • Kim, Joonmo;Oh, Jaewon;Kim, Minkwon;Kim, Yeonsoo;Lee, Jeongeun;Han, Sohee;Hwang, Byungyeon
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.246-254
    • /
    • 2019
  • This paper proposes a solution to the problem of finding a subgraph for a given instance of many terminals on a Euclidean plane. The subgraph is a tree, whose nodes represent the chosen terminals from the problem instance, and whose edges are line segments that connect two corresponding terminals. The tree is required to have the maximum number of nodes while the length is limited and is not sufficient to interconnect all the given terminals. The problem is shown to be NP-hard, and therefore a genetic algorithm is designed as an efficient practical approach. The method is suitable to various probable applications in layout optimization in areas such as communication network construction, industrial construction, and a variety of machine and electronics design problems. The proposed heuristic can be used as a general-purpose practical solver to reduce industrial costs by determining feasible interconnections among many types of components over different types of physical planes.

Using CNN- VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory

  • Zhong, Yongfeng;Liang, Xiaojun
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.223-239
    • /
    • 2022
  • Object detection has always been to pursue objects with particular properties or representations and to predict details on objects including the positions, sizes and angle of rotation in the current picture. This was a very important subject of computer vision science. While vision-based object tracking strategies for the analysis of competitive videos have been developed, it is still difficult to accurately identify and position a speedy small ball. In this study, deep learning (DP) network was developed to face these obstacles in the study of tennis motion tracking from a complex perspective to understand the performance of athletes. This research has used CNN-VGG 16 to tracking the tennis ball from broadcasting videos while their images are distorted, thin and often invisible not only to identify the image of the ball from a single frame, but also to learn patterns from consecutive frames, then VGG 16 takes images with 640 to 360 sizes to locate the ball and obtain high accuracy in public videos. VGG 16 tests 99.6%, 96.63%, and 99.5%, respectively, of accuracy. In order to avoid overfitting, 9 additional videos and a subset of the previous dataset are partly labelled for the 10-fold cross-validation. The results show that CNN-VGG 16 outperforms the standard approach by a wide margin and provides excellent ball tracking performance.

Camouflaged Adversarial Patch Attack on Object Detector (객체탐지 모델에 대한 위장형 적대적 패치 공격)

  • Jeonghun Kim;Hunmin Yang;Se-Yoon Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.

EDISON Platform to Supporting Education and Integration Research in Computational Science (계산과학 분야의 교육 및 융합연구 지원을 위한 EDISON 플랫폼)

  • Jin, Du-Seok;Jung, Young-Jin;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.176-182
    • /
    • 2012
  • Recently, a new theoretical and methodological approach for computational science is becoming more and more popular for analyzing and solving scientific problems in various scientific disciplines and applied research. Computational science is a field of study concerned with constructing mathematical models and quantitative analysis techniques and using large computing resources to solve the problems which are difficult to approach in a physical experimentally. In this paper, we present R&D of EDISON open integration platform that allows anyone like professors, researchers, industrial workers, students etc to upload their advanced research result such as simulation SW to use and share based on the cyber infrastructure of supercomputer and network. EDISON platform, which consists of 3 tiers (EDISON application framework, EDISON middleware, and EDISON infra resources) provides Web portal for education and research in 5 areas (CFD, Chemistry, Physics, Structural Dynamics, Computational Design) and user service.

Diffraction Analysis of Multi-layered Grating Structures using Rigorous Equivalent Transmission-Line Theory (정확한 등가 전송선로 이론을 사용한 다층 격자 구조의 회절특성 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.261-267
    • /
    • 2015
  • The eigenvalue problems involving the diffraction of waves by multi-layered grating configurations can be explained by rigorous modal expansion terms. Such a modal solution can be represented by equivalent transmission-line networks, which are generalized forms of simple conventional circuits. This approach brings considerable physical insight into the grating diffraction process of the fields everywhere. In particular, the transmission-line representation can serve as a template for computational algorithms that systematically evaluate dispersion properties, radiation effects and other optical characteristics that are not readily obtained by other methods. To illustrate the validity of the present rigorous approach, the previous research works are numerically confirmed and the results agree well each other.