Park Yon-Kyu;Kim Min-Seok;Kim Jong-Ho;Kang Dae-Im;Song Hou-Keun
Journal of Mechanical Science and Technology
/
제20권7호
/
pp.961-971
/
2006
A deadweight force standard machine is a mechanical structure that generates force by subjecting deadweights to the local gravitational field. The Korea Research Institute of Standards and Science (KRISS) developed and installed a 100 kN deadweight force standard machine for national force standards. It can generate forces from 2 kN to 110 kN in increments of 1 kN. The uncertainty of the force machine was estimated and declared as $2\times10^{-5}$. This 100 kN deadweight force machine was compared with the 500 kN deadweight force standard machine at KRISS and the 20 kN and 50 kN deadweight force standard machines at the National Metrology Institute of Japan (NMIJ). The measurement results showed good agreement between the deadweight force machines, and the accuracy level of the 100 kN deadweight force machine was verified.
Purpose : Investigate the effects of Horse-back riding Simulation Machine training on the Balance ability in Patients with Stroke. Method : The patients were divided to control group(n=18) with conventional rehabilitation conventional rehabilitation 60min/day and experimental group(n=17) with hippotherapy simulator 15 min/day after conventional rehabilitation 45min/day, 5 time/week for 4 weeks. Balance ability of both groups was assessed using Timed Up and Go(TUG), Berg balabce scale(BBS) and Center of pressure area(COPA). In the present result, there was a no significant(P>0.05) Results : The results of this study showed that Horse-back riding Simulation Machine training, after training, had meaningful difference of TUG, BBS and COPA. Conclusion : This study showed that Horse-back riding Simulation Machine training increased balance ability that resulted in enhancement of motor performance.
Purpose: The purpose of this study was to investigate the effect of lower limb training using a sliding rehabilitation machine on the foot motion and stability in stroke patients. Methods: Thirty participants were allocated to two groups: Training group (n=15) and Control group (n=15). Subjects in the control group received physical therapy for 30 minutes, five times per week, and those in the training group received lower limb training using a sliding rehabilitation machine for 30 minutes, five times per week, with physical therapy for 30 minutes, five times per week, during a period of six weeks. Heel rotation, hallux stiffness, foot balance, metatarsal load, toe out angle, and subtalar joint flexibility were measured by RS-scan. Results: Significant improvement of the foot motion (hallux stiffness, meta load) and the foot stability (toe out angle, subtalar joint flexibility) was observed in the training group. Conclusion: This study demonstrated that lower limb training using a sliding rehabilitation machine is an effective intervention to improve the foot motion and stability.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권5호
/
pp.1516-1539
/
2022
This article shows a set of physical information fusion IoT systems that we designed for smart buildings. Its essence is a computer system that combines physical quantities in buildings with quantitative analysis and control. In the part of the Internet of Things, its mechanism is controlled by a monitoring system based on sensor networks and computer-based algorithms. Based on the design idea of the agent, we have realized human-machine interaction (HMI) and machine-machine interaction (MMI). Among them, HMI is realized through human-machine interaction, while MMI is realized through embedded computing, sensors, controllers, and execution. Device and wireless communication network. This article mainly focuses on the function of wireless sensor networks and MMI in environmental monitoring. This function plays a fundamental role in building security, environmental control, HVAC, and other smart building control systems. The article not only discusses various network applications and their implementation based on agent design but also demonstrates our collaborative information fusion strategy. This strategy can provide a stable incentive method for the system through collaborative information fusion when the sensor system is unstable in the physical measurements, thereby preventing system jitter and unstable response caused by uncertain disturbances and environmental factors. This article also gives the results of the system test. The results show that through the CPS interaction of HMI and MMI, the intelligent building IoT system can achieve comprehensive monitoring, thereby providing support and expansion for advanced automation management.
Purpose : The purpose of this study was to evaluate the effects of indoor horseback-riding machine(SLIM $RIDER^{(R)}$) exercise on balance of the elderly with dementia. Methods : Subjects over 65 years of age in the nursing home were divided into three groups : Alzheimer's dementia group(n=7), vascular dementia group(n=6), and general elderly group(n=6). All groups(n=19) practiced indoor horseback-riding machine exercise for 20 min a day, three days a week during 6 weeks, and their balance were evaluated at before and 2, 4, 6 weeks after intervention, using the BPM. The level of statistical significance was .05. Results : After the 4weeks indoor horseback-riding machine exercise, balance was significantly increased in the all groups(p<.05). Conclusion : Indoor Horseback-riding machine exercise had a positive effect on subjects' balance.
International Journal of Computer Science & Network Security
/
제22권4호
/
pp.147-158
/
2022
Cloud Computing offers flexible, on demand, ubiquitous resources for cloud users. Cloud users are provided computing resources in a virtualized environment. In order to meet the growing demands for computing resources, data centres contain a large number of physical machines accommodating multiple virtual machines. However, cloud data centres cannot utilize their computing resources to their total capacity. Several policies have been proposed for improving energy proficiency and computing resource utilization in cloud data centres. Virtual machine placement is an effective method involving efficient mapping of virtual machines to physical machines. However, the availability of many physical machines accommodating multiple virtual machines in a data centre has made the virtual machine placement problem a non deterministic polynomial time hard (NP hard) problem. Metaheuristic algorithms have been widely used to solve the NP hard problems of multiple and conflicting objectives, such as the virtual machine placement problem. In this context, we presented essential concepts regarding virtual machine placement and objective functions for optimizing different parameters. This paper provides a taxonomy of metaheuristic algorithms for the virtual machine placement method. It is followed by a review of prominent research of virtual machine placement methods using meta heuristic algorithms and comparing them. Finally, this paper provides a conclusion and future research directions in virtual machine placement of cloud computing.
Hanji made of mulberry fibers has the lower printability due to their long fiber length, the diffusible property of ink, and low smoothness. This study was carried out to analyze the physical and optical properties of machine-made Hanji controlled by the different contents of paper mulberry 20, 40, 60, 80 and 100%. In this study, the results of comparing machine-made Hanji controlled by the different contents of $Paper$$mulberry$ with commercial paper and inkjet coated paper are as following: Tearing strength of machine-made Hanji is higher than domestic paper and inkjet coated paper. By increasing paper mulberry contents of machine-made Hanji appeared that tensile strength increased and smoothness gradually decreased. Printability of machine-made Hanji is less than domestic paper and inkjet coated paper. However, there were significant possibility to use for printing paper.
This research surveys the effects of POY physical properties and processing conditions of belt texturing machine to the draw textured yarns. The various textured yarns are made with variation of 1st heater temperature, draw ratio and velocity ratio, and the physical properties of these specimens such as yarn linear density, tensile properties and wet and dry thermal shrinkages are measured and analyzed with POY physical properties and processing conditions of texturing machine. Especially yarn mechanical properties of DTY are analysed with the variation of untwisting tension (T$_2$) on the untwisting part in DTY process and thin and thick DTY yam model are proposed with surging phenomena in DTY process.
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.374-388
/
2022
Cloud computing has been one of the most critical technology in the last few decades. It has been invented for several purposes as an example meeting the user requirements and is to satisfy the needs of the user in simple ways. Since cloud computing has been invented, it had followed the traditional approaches in elasticity, which is the key characteristic of cloud computing. Elasticity is that feature in cloud computing which is seeking to meet the needs of the user's with no interruption at run time. There are traditional approaches to do elasticity which have been conducted for several years and have been done with different modelling of mathematical. Even though mathematical modellings have done a forward step in meeting the user's needs, there is still a lack in the optimisation of elasticity. To optimise the elasticity in the cloud, it could be better to benefit of Machine Learning algorithms to predict upcoming workloads and assign them to the scheduling algorithm which would achieve an excellent provision of the cloud services and would improve the Quality of Service (QoS) and save power consumption. Therefore, this paper aims to investigate the use of machine learning techniques in order to predict the workload of Physical Hosts (PH) on the cloud and their energy consumption. The environment of the cloud will be the school of computing cloud testbed (SoC) which will host the experiments. The experiments will take on real applications with different behaviours, by changing workloads over time. The results of the experiments demonstrate that our machine learning techniques used in scheduling algorithm is able to predict the workload of physical hosts (CPU utilisation) and that would contribute to reducing power consumption by scheduling the upcoming virtual machines to the lowest CPU utilisation in the environment of physical hosts. Additionally, there are a number of tools, which are used and explored in this paper, such as the WEKA tool to train the real data to explore Machine learning algorithms and the Zabbix tool to monitor the power consumption before and after scheduling the virtual machines to physical hosts. Moreover, the methodology of the paper is the agile approach that helps us in achieving our solution and managing our paper effectively.
The physical and chemical transformation and reduction degree of food waste were investigated in a food waste reduction machine using thermophilic bacteria. The first operation of the reduction machine for grain, vegetables, fishes and flesh wastes proceeded during three weeks. The first and second reduction percentages of the wastes were 98.3% and 93.2%, respectively. The residue of food waste was composed of fruits, fish, and vegetables. The temperature distribution of the reduction machine ranged between 30 and 6$0^{\circ}C$ appropriate for growth of thermophilic bacteria. At initial stage the pH in the reduction machine decreased with organic acids produced, but increased as the organic acids decomposed by different thermophilic bacteria. In the reduction machine, the moisture content of the food waste was reduced from 80-90% to 10-20% after 24 hours, and the salinity of residue was 0.29% after the second operation. The degree of odor was most high between 2 and 4 hours.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.