• Title/Summary/Keyword: Phylogenetic relationship

Search Result 470, Processing Time 0.027 seconds

Incidence, Molecular Characteristics and Pathogenicity of Gibberella fujikuroi Species Complex Associated with Rice Seeds from Asian Countries

  • Jeon, Young-Ah;Yu, Seung-Hun;Lee, Young Yi;Park, Hong-Jae;Lee, Sokyoung;Sung, Jung Sook;Kim, Yeon-Gyu;Lee, Ho-Sun
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.225-233
    • /
    • 2013
  • Gibberella fujikuroi species complex (GFSC) was isolated from rice (Oryza sativa L.) seed samples from ten Asian countries and investigated for incidence of GFSC, molecular characteristics, and pathogenicity. Regardless of geographic origin, GFSC was detected with incidences ranging from 3% to 80%. Four species, Fusarium fujikuroi, F. concentricum, F. proliferatum, and F. verticillioides, were found to show an association with rice seeds, with F. fujikuroi being the predominant species. In phylogenetic analyses of DNA sequences, no relationship was found between species, isolates, and geographic sources of samples. Unidentified fragments of the ${\beta}$-tubulin gene were observed in ten isolates of F. fujikuroi and F. verticillioides. With the exception of three isolates of F. fujikuroi, F. fujikuroi, F. proliferatum, and F. verticillioides were found to have FUM1 (the fumonisin biosynthetic gene); however, FUM1 was not found in isolates of F. concentricum. Results of pathogenicity testing showed that all isolates caused reduced germination of rice seed. In addition, F. fujikuroi and F. concentricum caused typical symptoms of bakanae, leaf elongation and chlorosis, whereas F. proliferatum and F. verticillioides only caused stunting of seedlings. These findings provide insight into the characteristics of GFSC associated with rice seeds and might be helpful in development of strategies for management of bakanae.

Evaluation of Japanese encephalitis virus vaccine strains currently used in pigs by molecular characterization

  • Lee, Jeong-Ah;Yang, Dong-Kun;Kim, Ha-Hyun;Kim, Sun-Young;Nah, Jin-Ju;Cho, Soo-Dong;Song, Jae-Young
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.3
    • /
    • pp.169-174
    • /
    • 2012
  • Japanese encephalitis virus (JEV) is one of the main causes of viral encephalitis in human and animals. For over 30 years, a live attenuated JEV vaccine strain has been used in the veterinary field, and it is required to conduct quality evaluation studies on the commercial vaccines. For the quality control of live attenuated JEV vaccine, we investigated the nucleotide sequence similarity of prME gene derived from five JEV vaccines commercially available in pigs in Korea. The Vero cells infected with JEV vaccines showed specific cytopathic effect, which was characterized by rounding and detached cells. In the phylogenetic analysis, all of the vaccine strains showed a close relationship with the original vaccine seed strain (Anyang 300) and clustered into the genotype 3. In comparison of the nucleotide and deduced amino acid sequences of prME genes with the original strain, all JEV vaccine strains showed high amino acid similarity ranging from 98.9% to 99.5%, but had several point mutations, probably due to high mutation rates of viral RNA polymerase by several virus passages. Even though the current JEV vaccine strains have been maintained and produced for a long period of time, the genetic characterization of them have been rarely changed. However, since the mid 1990's, molecular epidemiology of JEV has been changed sharply from genotype 3 to genotype 1 in Korea, further studies on new vaccine strains to genotype 1 is required for more effective prevention in the field.

Genetic Relationships between Gardenia jasminoides var. radicans and G. jasminoides for. grandiflora Using ISSR Markers (SSR을 이용한 꽃치자와 열매치자의 유전적 관계)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.24-30
    • /
    • 2007
  • Inter simple sequence repeat (ISSR) markers were performed in order to analyse the genetic relation-ships of both taxa of Gardenia jasminoides var. radicans and G. jasminoides for. grandifora. Over the 88 fragments, only one locus (ISSR-11-05) was specific to G. jasminoides var. radicans and only one (ISSR-09-05) G. jasminoides for. grandiflora. Although G. jasminoides var. radicans showed low levels of alleles and Shannon's information index than G. jasminoides for. Grandiflora, however, there was not significant differences (p > 0.05). For both taxa the mean genetic diversity of natural populations was higher than that of cultivation populations. It was suggested that domestication processes via artificial selection do not have eroded the high levels of genetic diversity. ISSR markers were more effective in classifying natural populations of wild G. jasminoides in East Asia as well as cultivated G. jasminoides. The information about the phylogenetic relationship of G. jasminoides var. radicans and its closely related species is very valuable of the systematics of genus Gardenia, the origin of cultivated G. jasminoides, and future G. jasminoides breeding.

One unusual species, Coilia sp. (Engraulidae, Pisces) from the Yellow Sea

  • Kwun, Hyuck-Joon;Kim, Yeong-Hye;Kim, Jong-Bin;Jeong, Choong-Hoon;Kim, Jin-Koo
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 2010
  • Four specimens of unknown Coilia sp. were collected for the first time from the Yellow Sea in 2008 and compared with Coilia mystus and Coilia nasus. Coilia sp. showed similar morphology to C. mystus and C. nasus, but differed in that its tail was considerably shorter. We conducted an analysis of the morphological and genetic characteristics in an effort to clarify the taxonomic position of Coilia sp. In counts and measurements, Coilia sp. were well distinguished from C. nasus by the number of scutes (42-44 in Coilia sp. vs. 40-45 in C. mystus vs. 45-55 in C. nasus), ratio of dorsal base length to head length (43.4-47.6 vs. 37.9-47.6 vs. 33.0-41.0), and eye length to head length (19.2-20.8 vs. 17.0-22.4 vs. 13.8-18.2). In caudal skeleton of Coilia sp., urostyle, hypural and epural bones were not observed; instead of them, caudal fin rays were supported by the last vertebra, neural and haemal spines' extension. The molecular phylogenetic relationship was analyzed using 414 base-pair 12S rRNA mitochondrial DNA sequences. The Kimura-2-parameter distance between Coilia sp. and C. mystus was 0.3%, but was 1.3% between Coilia sp. and C. nasus. Both the neighbor-joining tree and maximum-likelihood tree showed that Coilia sp. are closely clustered with C. mystus. Therefore, our results suggest that the Coilia sp. may be a deformed fish of C. mystus.

Genetic Diversity and Phenetic Relationship of Dill (Anethum graveolens L.) by rps16-trnK DNA Sequences (rps16-trnK DNA 서열에 의한 딜(Anethum graveolens L.)의 유전적 다양성과 유전 관계)

  • Sung, Jung-Sook;Chung, Jong-Wook;Lee, Gi-An;Kang, Man-Jung;Lee, Sok-Young;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1305-1310
    • /
    • 2013
  • Dill (Anethum graveolens L.) is an annual herb with a long history and it is mainly used as a spice and as a medicine that is effective as a digestive aid, a sedative, and a narcotic, and that helps remove bad breath. Dill grows wild in the districts along the shores of the Mediterranean Sea, West Asia, China, and Korea. An estimate of the phylogenetic relationships within dill accessions in 20 countries was inferred using data from the rps16-trnK3-intergenic spacer. The aligned data sets for dill ranged from 747 to 779 nucleotides (bp) as a result of the differences in the insert/delete nucleotides. The sequence variation within the dill accessions was mostly due to nucleotide substitutions, although several small insertions and deletions can be found. Among 100 accessions from 20 countries, the Eastern Asia accessions were more closely related to the North American accessions than to the Central Asia and European accessions. Although some accessions were not congruent completely with geographical locations, the dill accessions with rps16-trnK analysis resulted in plants with better-resolved clades.

Molecular cloning and expression analysis of an interferon stimulated gene 15 from rock bream Oplegnathus fasciatus

  • Kim, Ju-Won;Kwon, Mun-Gyeong;Park, Myoung-Ae;Hwang, Jee-Youn;Park, Hyung-Jun;Baeck, Gun-Wook;Kim, Mu-Chan;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.23 no.2
    • /
    • pp.177-187
    • /
    • 2010
  • The Interferon stimulated gene 15 (ISG15) is strongly induced in many cell types by IFNs, viral infections, and double-stranded RNA (poly I:C). The ISG15 homologue cDNA was isolated from the rock bream LPS stimulated leukocyte cDNA library. The rock bream ISG15 homologue was found to consist of 833 bp encoding 157 amino acid residues. Compared with other known ISG15 peptide sequences, the most conserved regions of the rock bream ISG15 peptide were found to be the tandem ubiquitin-like domains and a C-terminal LRLRGG conjugating motif, characteristic of mammalian and non-mammalian ISG15 proteins. Phylogenetic analysis based on the deduced amino acid sequence revealed a homologous relationship between the ISG15 sequence of rock bream and that of Atlantic salmon, Atlantic cod, northern snake head, black rockfish and olive flounder. The expression of the rock bream ISG15 molecule was induced in the peripheral blood leukocytes (PBLs) from 1 to 24 h following poly I:C stimulation, with a peak at 3 h post-stimulation. The rock bream ISG15 gene was predominantly expressed in the PBLs, spleen and gill.

Molecular identification and expression analysis of bactericidal permeability-increasing protein/ LPS-binding protein (BPI/LBP) from Black rockfish Sebastes schlegeli

  • Kwon, Mun-Gyeong;Kim, Ju-Won;Park, Myoung-Ae;Hwang, Jee-Youn;Park, Hyung-Jun;Baeck, Gun-Wook;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.23 no.3
    • /
    • pp.323-334
    • /
    • 2010
  • Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) are important components of the mammalian innate defence system against Gram-negative infections. The BPI/LBP cDNA was identified from the black rockfish ConA/PMA or LPS stimulated leukocyte cDNA library. The full-length BR-BPI/LBP cDNA was 2118 bp long and contained an open reading frame (ORF) of 1422 bp that encoded 473 amino-acid residues. The 5' UTR had a length of 57 bp, and the 3' UTR 639 bp. The molecular weight and theoretical isoelectric point (pI) values were calculated 51.4 kDa and 9.72, respectively. Compared with other known BPI or BPI/LBP peptide sequences, the most conserved regions of the black rockfish BPI/LBP peptide were found to be the BPI1 N-terminal, BPI2 C-terminal domains and a LPS binding domain. Phylogenetic analysis based on the deduced amino acid sequence revealed a homologous relationship between the BPI/LBP sequence of black rockfish and that of other teleosts. The black rockfish BPI/LBP gene was predominantly expressed in the PBLs, head kidney, trunk kidney and spleen. The expression of the black rockfish BPI/LBP molecule was induced in the peripheral blood leukocytes (PBLs) from 1 to 24 h following LPS stimulation, with a peak at 12 h post-stimulation.

Methanogenesis and Methane Oxidation in Paddy Fields under Organic Fertilization

  • Kim, Chungwoo;Walitang, Denver I.;Sa, Tongmin
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.295-312
    • /
    • 2021
  • BACKGROUND: Global warming is one of the most pressing environmental issues which concomitantly complicates global climate change. Methane emission is a balance between methanogenesis and methane consumption, both of which are driven by microbial actions in different ecosystems producing methane, one of the major greenhouse gases. Paddy fields are major sources of anthropogenic methane emissions and could be compounded by organic fertilization. METHODS AND RESULTS: Literature reviews were conducted to give an overview of the global warming conditions and to present the relationship of carbon and methane to greenhouse gas emissions, and the need to understand the underlying processes of methane emission. A more extensive review was done from studies on methane emission in paddy fields under organic fertilization with greater emphasis on long term amendments. Changes in paddy soils due to organic fertilization include alterations of the physicochemical properties and changes in biological components. There are diverse phylogenetic groups of methanogens and methane oxidizing bacteria involved in methane emission. Also, multiple factors influence methanogenesis and methane oxidation in rice paddy fields under organic fertilization and they should be greatly considered when developing mitigating steps in methane emission in paddy fields especially under long term organic fertilization. CONCLUSION(S): This review showed that organic fertilization, particularly for long term management practices, influenced both physicochemical and biological components of the paddy fields which could ultimately affect methanogenesis, methane oxidation, and methane emission. Understanding interrelated factors affecting methane emission helps create ways to mitigate their impact on global warming and climate change.

Mitochondrial Genome of Spirometra theileri Compared with Other Spirometra Species

  • Ndosi, Barakaeli Abdieli;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Kang, Yeseul;Nath, Tilak Chandra;Bia, Mohammed Mebarek;Eamudomkarn, Chatanun;Jeon, Hyeong-Kyu;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.2
    • /
    • pp.139-148
    • /
    • 2021
  • This study was carried out to provide information on the taxonomic classification and analysis of mitochondrial genomes of Spirometra theileri. One strobila of S. theileri was collected from the intestine of an African leopard (Panthera pardus) in the Maswa Game Reserve, Tanzania. The complete mtDNA sequence of S. theileri was 13,685 bp encoding 36 genes including 12 protein genes, 22 tRNAs and 2 rRNAs with absence of atp8. Divergences of 12 protein-coding genes were as follow: 14.9% between S. theileri and S. erinaceieuropaei, 14.7% between S. theileri and S. decipiens, and 14.5% between S. theileri with S. ranarum. Divergences of 12 proteins of S. theileri and S. erinaceieuropaei ranged from 2.3% in cox1 to 15.7% in nad5, while S. theileri varied from S. decipiens and S. ranarum by 1.3% in cox1 to 15.7% in nad3. Phylogenetic relationship of S. theileri with eucestodes inferred using the maximum likelihood and Bayesian inferences exhibited identical tree topologies. A clade composed of S. decipiens and S. ranarum formed a sister species to S. erinaceieuropaei, and S. theileri formed a sister species to all species in this clade. Within the diphyllobothridean clade, Dibothriocephalus, Diphyllobothrium and Spirometra formed a monophyletic group, and sister genera were well supported.

Druggability for COVID-19: in silico discovery of potential drug compounds against nucleocapsid (N) protein of SARS-CoV-2

  • Ray, Manisha;Sarkar, Saurav;Rath, Surya Narayan
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.43.1-43.13
    • /
    • 2020
  • The coronavirus disease 2019 is a contagious disease and had caused havoc throughout the world by creating widespread mortality and morbidity. The unavailability of vaccines and proper antiviral drugs encourages the researchers to identify potential antiviral drugs to be used against the virus. The presence of RNA binding domain in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be a potential drug target, which serves multiple critical functions during the viral life cycle, especially the viral replication. Since vaccine development might take some time, the identification of a drug compound targeting viral replication might offer a solution for treatment. The study analyzed the phylogenetic relationship of N protein sequence divergence with other 49 coronavirus species and also identified the conserved regions according to protein families through conserved domain search. Good structural binding affinities of a few natural and/or synthetic phytocompounds or drugs against N protein were determined using the molecular docking approaches. The analyzed compounds presented the higher numbers of hydrogen bonds of selected chemicals supporting the drug-ability of these compounds. Among them, the established antiviral drug glycyrrhizic acid and the phytochemical theaflavin can be considered as possible drug compounds against target N protein of SARS-CoV-2 as they showed lower binding affinities. The findings of this study might lead to the development of a drug for the SARS-CoV-2 mediated disease and offer solution to treatment of SARS-CoV-2 infection.