• 제목/요약/키워드: Phylogenetic diversity

검색결과 631건 처리시간 0.024초

Mitochondrial DNA variation and phylogeography of native Mongolian goats

  • Ganbold, Onolragchaa;Lee, Seung-Hwan;Paek, Woon Kee;Munkhbayar, Munkhbaatar;Seo, Dongwon;Manjula, Prabuddha;Khujuu, Tamir;Purevee, Erdenetushig;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권6호
    • /
    • pp.902-912
    • /
    • 2020
  • Objective: Mongolia is one of a few countries that supports over 25 million goats, but genetic diversity, demographic history, and the origin of goat populations in Mongolia have not been well studied. This study was conducted to assess the genetic diversity, phylogenetic status and population structure of Mongolian native goats, as well as to discuss their origin together with other foreign breeds from different countries using hypervariable region 1 (HV1) in mtDNA. Methods: In this study, we examined the genetic diversity and phylogenetic status of Mongolian native goat populations using a 452 base-pair long fragment of HVI of mitochondrial DNA from 174 individuals representing 12 populations. In addition, 329 previously published reference sequences from different regions were included in our phylogenetic analyses. Results: Investigated native Mongolian goats displayed relatively high genetic diversities. After sequencing, we found a total of 109 polymorphic sites that defined 137 haplotypes among investigated populations. Of these, haplotype and nucleotide diversities of Mongolian goats were calculated as 0.997±0.001 and 0.0283±0.002, respectively. These haplotypes clearly clustered into four haplogroups (A, B, C, and D), with the predominance of haplogroup A (90.8%). Estimates of pairwise differences (Fst) and the analysis of molecular variance values among goat populations in Mongolia showed low genetic differentiation and weak geographical structure. In addition, Kazakh, Chinese (from Huanghuai and Leizhou), and Arabian (Turkish and Baladi breeds) goats had smaller genetic differentiation compared to Mongolian goats. Conclusion: In summary, we report novel information regarding genetic diversity, population structure, and origin of Mongolian goats. The findings obtained from this study reveal that abundant haplogroups (A to D) occur in goat populations in Mongolia, with high levels of haplotype and nucleotide diversity.

Genetic diversity and phylogenetic relationship analyzed by microsatellite markers in eight Indonesian local duck populations

  • Hariyono, Dwi Nur Happy;Maharani, Dyah;Cho, Sunghyun;Manjula, Prabuddha;Seo, Dongwon;Choi, Nuri;Sidadolog, Jafendi Hasoloan Purba;Lee, Jun-Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권1호
    • /
    • pp.31-37
    • /
    • 2019
  • Objective: At least eight local duck breeds have been recognized and documented as national germplasm of Indonesia so far. It is necessary to genetically characterize the local duck breeds for aiding conservation and future improvement strategies. Thus, this study was carried out to assess genetic diversity and phylogenetic relationship of eight local duck populations of Indonesia using microsatellite markers. Methods: In total, 240 individuals (30 individuals each population) from Alabio (AL), Bayang (BY), Magelang (MG), Mojosari (MJ), Pegagan (PG), Pitalah (PT), Rambon (RM), and Turi (TR) duck populations were genotyped using 22 microsatellite markers. Results: The results showed a moderate level of genetic diversity among populations, with a total of 153 alleles detected over all loci and populations, ranging from 3 to 22 alleles per locus. Observed (Ho) and expected heterozygosity (He), as well as polymorphism information content over all loci and populations were 0.440, 0.566, and 0.513, respectively. Heterozygote deficiency in the overall populations ($F_{IT}=0.237$), was partly due to the heterozygote deficiency within populations ($F_{IS}=0.114$) and moderate level of genetic differentiation among populations ($F_{ST}=0.137$). The most diverse population was MG (He = 0.545) and the least diverse population was AL (He = 0.368). The majority of populations were relatively in heterozygote deficiency (except AL), due to inbreeding. The genetic distances, phylogenetic trees, and principal coordinates analysis concluded that the populations can be grouped into two major clusters, resulting AL, MG, and MJ in one cluster separated from the remaining populations. Conclusion: The present study revealed a considerable genetic diversity of studied populations and thus, proper management strategies should be applied to preserve genetic diversity and prevent loss of alleles.

Some Universal Characteristics of Intertidal Bacterial Diversity as Revealed by 16S rRNA Gene-Based PCR Clone Analysis

  • Shuang, J.L.;Liu, C.H.;An, S.Q.;Xing, Y.;Zheng, G.Q.;Shen, Y.F.
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권12호
    • /
    • pp.1882-1889
    • /
    • 2006
  • A 16S rDNA clone library was generated to investigate the bacterial diversity in intertidal sediment from the coast of the Yellow Sea, P. R. China. A total of 102 clones were sequenced and grouped into 73 OTUs using a phylogenetic approach. The sequenced clones fell into 11 bacterial lineages: Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, Acidobacteria, Actinobacteria, Firmicutes, Spirochaetes, and candidate divisions of BRCl, OP3, and OP1l. Based on a phylogenetic analysis of these bacteria, together with the ten most closely related sequences deposited in the GenBank, it was concluded that intertidal bacteria are most likely derived from marine bacteria with a remarkable diversity, and some are particularly abundant in intertidal sediment.

Mitochondrial DNA Diversity and Origin of Red Chittagong Cattle

  • Bhuiyan, M.S.A.;Bhuiyan, A.K.F.H.;Yoon, D.H.;Jeon, J.T.;Park, C.S.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권10호
    • /
    • pp.1478-1484
    • /
    • 2007
  • To determine the origin and genetic diversity of Red Chittagong (RC) cattle in Bangladesh, we analyzed mitochondrial DNA displacement loop (D-loop) sequences of 48 samples along with 22 previously published sequences from Bos indicus and Bos taurus breeds. Twenty five haplotypes were identified in RC cattle that were defined by 44 polymorphic sites and nucleotide diversity was $0.0055{\pm}0.0026$. The estimated sequence divergence times between RC and other zebu cattle breeds studied ranged between 22,700-26,900 years before present (YBP) which, it is suggested, predate domestication of RC cattle. Furthermore, it is assumed that introgressions have occurred in this breed mainly from Indian zebu breeds in the recent millennia. The phylogenetic studies showed RC cattle clustered with Bos indicus lineage with two distinct haplogroups representing high genetic variability of this breed. These findings can be used for designing proper breeding and conservation strategies for RC cattle in Bangladesh.

Biogeographical Distribution and Diversity of Bacterial Communities in Surface Sediments of the South China Sea

  • Li, Tao;Wang, Peng
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.602-613
    • /
    • 2013
  • This paper aims at an investigation of the features of bacterial communities in surface sediments of the South China Sea (SCS). In particular, biogeographical distribution patterns and the phylogenetic diversity of bacteria found in sediments collected from a coral reef platform, a continental slope, and a deep-sea basin were determined. Bacterial diversity was measured by an observation of 16S rRNA genes, and 18 phylogenetic groups were identified in the bacterial clone library. Planctomycetes, Deltaproteobacteria, candidate division OP11, and Alphaproteobacteria made up the majority of the bacteria in the samples, with their mean bacterial clones being 16%, 15%, 12%, and 9%, respectively. By comparison, the bacterial communities found in the SCS surface sediments were significantly different from other previously observed deep-sea bacterial communities. This research also emphasizes the fact that geographical factors have an impact on the biogeographical distribution patterns of bacterial communities. For instance, canonical correspondence analyses illustrated that the percentage of sand weight and water depth are important factors affecting the bacterial community composition. Therefore, this study highlights the importance of adequately determining the relationship between geographical factors and the distribution of bacteria in the world's seas and oceans.

Identification of 26 Germplasms of Safflower (Carthamus tinctorius L.) with ISSR and SCAR Markers

  • Sung, Jung-Sook;Cho, Gyu-Taek;Lee, Suk-Young;Baek, Hyung-Jin;Park, So-Hye;Huh, Man-Kyu
    • 한국작물학회지
    • /
    • 제55권4호
    • /
    • pp.319-326
    • /
    • 2010
  • Safflower (Carthamus tinctorius L.) is a herb primarily distributed throughout in the world. We have used the inter-simple sequence repeats (ISSR) technique to investigate the phylogenetic relationships and genetic diversity of C. tinctorius. Of all germplasms, 88.7% were polymorphic among all germplasms. Mean genetic diversity within germplasms was very low (0.048). The Turkey germplasm had the highest expected diversity (0.082) and Australia germplasm was the lowest (0.020). These values indicate that most of the genetic diversity of safflower is found among germplasms and there is a high among-germplasm differentiation. We found eight phenetic bands for determining the specific marker of germplasm with SCAR markers. The regions of the Mediterranean Sea and India may be the most probable candidates for the origin of safflower. The tree showed four major clades: (1) European germplasms, (2) Azerbaijan, Egypt, and Ethiopia, (3) Australia, and (4) America.

Evaluating Genetic Diversity of Agaricus bisporus Accessions through Phylogenetic Analysis Using Single-Nucleotide Polymorphism (SNP) Markers

  • Oh, Youn-Lee;Choi, In-Geol;Kong, Won-Sik;Jang, Kab-Yeul;Oh, Min ji;Im, Ji-Hoon
    • Mycobiology
    • /
    • 제49권1호
    • /
    • pp.61-68
    • /
    • 2021
  • Agaricus bisporus, commonly known as the button mushroom, is widely cultivated throughout the world. To breed new strains with more desirable traits and improved adaptability, diverse germplasm, including wild accessions, is a valuable genetic resource. To better understand the genetic diversity available in A. bisporus and identify previously unknown diversity within accessions, a phylogenetic analysis of 360 Agaricus spp. accessions using single-nucleotide polymorphism genotyping was performed. Genetic relationships were compared using principal coordinate analysis (PCoA) among accessions with known origins and accessions with limited collection data. The accessions clustered into four groups based on the PCoA with regard to genetic relationships. A subset of 67 strains, which comprised a core collection where repetitive and uninformative accessions were not included, clustered into 7 groups following analysis. Two of the 170 accessions with limited collection data were identified as wild germplasm. The core collection allowed for the accurate analysis of A. bisporus genetic relationships, and accessions with an unknown pedigree were effectively grouped, allowing for origin identification, by PCoA analysis in this study.