• Title/Summary/Keyword: Phthalocyanine

Search Result 235, Processing Time 0.032 seconds

Syntheses and Thermal Properties of 5,10-Disubstituted-2,3,7,8-tetracyano-5,10-dihydrodipyrazino [2,3-b:2′,3′-el pyrazines and Polymeric Porphyrazines Derived from 2,3-Dichloro-5,6-dicyanopyrazine

  • Jaung, Jae-yun;Kim, Sung-Dong
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.71-75
    • /
    • 2000
  • Intermolecular cyclization of 2-alkylamino-3-chloro-5,6-dicyanopyrazine 2 in the presence of tributylamine in N,N-dimethylformamide (DMF) gave 5,10-disubstituted-2,3,7,8-tetracyano -5,10-dihydrodipyrazino〔2,3-b:2',3'-e]pyrazines 3, which showed strong mesomorphic property and were anticipated as new chromophoric system for functional dye materials. Absorption spectra, fluorescent properties and other physical properties were correlated with their chemical structures. Vanadyl oligomeric porphyrazine with long alkyl groups synthesized from 3 had satisfactory solubility in tetrahydrofuran (THF), diethyl ether and dimethylsulfoxide (DMSO). The syntheses and characterization of vanadyl polymeric porphyrazines derived from 3 with long alkyl groups are reported.

  • PDF

Electrical Properties of CuPc Field-effect Transistor with Different Electrodes (전극 변화에 따른 CuPc Field-effect Transistor의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.506-507
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel device was width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

Electrical Properties of CuPc Field-effect Transistor with Different Electrodes (전극에 따른 CuPc Field-effect Transistor의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.12-13
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

Electrical Properties of CuPc FET with Different Substrate Temperature

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.170-173
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated the organic field-effect transistor based a copper phthalocyanine (CuPc) as an active layer on the silicon substrate. The CuPc FET device was made a topcontact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in CuPc FET and we calculated the effective mobility with each device. Also, we observed the AFM images with different substrate temperature.

Electrical Properties of a CuPc Field-Effect Transistor Using a UV/Ozone Treated and Untreated Substrate

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.40-42
    • /
    • 2011
  • An organic field-effect transistor (OFET) was fabricated using a copper phthalocyanine (CuPc) as the active layer on the silicon substrate. The CuPc FET device was configured as a top-contact type. The substrate temperature was room temperature. The CuPc thickness was 40 nm, and the channel length and channel width were 100 ${\mu}m$ 3 mm, respectively. Typical current-voltage (I-V) characteristics of the CuPc FET were observed and subsequently compared to the UV/ozone treatment on substrate surface.

Electrical Properties of CuPc Field-effect Transistor with Different Metal Electrodes (금속 전극 변화에 따른 CuPc Field-effect Transistor의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.494-495
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

Electrical Properties of Photovoltaic Cell Using C60 (C60을 이용한 광기전 소자의 전기적 특성 연구)

  • Lee, Ho-Sik;Ahn, Jun-Ho;Lee, Won-Jae;Jang, Kyung-Uk;Choi, Myung-Kyu;Kim, Tae-Wan;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.512-513
    • /
    • 2005
  • We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerene(C60) as electron acceptor(A) with doped charge transport layers, and BCP and $Alq_3$ as an exciton blocking layer(EBL). We have measured the photovoltaic characteristics of the solar cell devices using the Xe lamp as a light source. We were use of $Alq_3$ layer leads to external power conversion efficiency was 2.65% at illumination intensity $100mW/cm^2$. Also we confirmed the optimum thickness ratio of the DA hetero-junction is about 1:2.

  • PDF

Fabrication and Electrical Properties of CuPc FET with Different Substrate Temperature (CuPc FET의 기판온도에 따른 제작 및 전기적 특성 연구)

  • Lee, Ho-Shik;Park, Yong-Pil;Lim, Eun-Ju;Iwamot, Mistumasa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.488-489
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different substrate temperature. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET.

  • PDF

The characteristic analysis of the nano-fabric synthesized by metal organic matter (금속유기물에 의해 합성된 나노구조물의 특성분석에 관한 연구)

  • Ryu, J.T.;Ikuno, T.;Katayama, M.;Baek, Y.G.;Kim, Y.B.;Oura, Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.935-938
    • /
    • 2004
  • In this work, carbon nanofibers have synthesized a low temperature using DC Ar Plasma and Fe-Phthalocyanine, and a characteristic difference of the synthesized CNF according to the location of the substrate was investigated. the density of CNFs synthesized on the position (a) were higher than that synthesized on the position (b) [See the Fig. 1]. Also, the length of CNFs was different. In the shape, CNFs with screw and straight line shape were synthesized in the position (a), but only CNFs with straight line shape were synthesized in the position (b). The difference have an important effect on the field emission characteristics.

  • PDF

Synthesis and Characterization of Phthalocyaninatometal (PcM, M=$Fe^{2+}$, $Co^{2+}$ Complexes with Monodenate Aromatic Isocyanide Ligands

  • 임윤묵;박하선;송수호;박찬조;유하일;이종기;양현수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.701-704
    • /
    • 1999
  • Metallophthalocyanines [PcM, Pc: phthalocyanine, M: Fe 2+ , Co 2+ ] were reacted with α-isocyanonaphthalene( α-in) and α-isocyanoanthracene (α-ia) to form monomeric complexes. The synthesis and coordination behaviour of the isocyanides as a ligand (L) are discussed. All the products were characterized by spectroscopic methods and instrumental analysis. The electrical conductivities of these complexes, which were not treated with dopant, were attributed to the metal-ligand electron delocalization in the PcML2 complexes. The complexes have an enlarged macrocycle where the π-electron back donating ability of PcM is stronger than the σ-electron coordinating ability of the isonitrile ligands. Their electrical conductivities were measured as σRT = 2.1×10 -9 ~3×10 -10 S/cm. Also thermal stability was investigated in this study.