• Title/Summary/Keyword: Photovoltaic cells

Search Result 800, Processing Time 0.029 seconds

Synthesis and Characterization of Quinoxaline-Based Thiophene Copolymers as Photoactive Layers in Organic Photovoltaic Cells

  • Choi, Yoon-Suk;Lee, Woo-Hyung;Kim, Jae-Ryoung;Lee, Sang-Kyu;Shin, Won-Suk;Moon, Sang-Jin;Park, Jong-Wook;Kang, In-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.417-423
    • /
    • 2011
  • A series of new quinoxaline-based thiophene copolymers (PQx2T, PQx4T, and PQx6T) was synthesized via Yamamoto and Stille coupling reactions. The $M_ws$ of PQx2T, PQx4T, and PQx6T were found to be 20,000, 12,000, and 29,000, with polydispersity indices of 2.0, 1.2, and 1.1, respectively. The UV-visible absorption spectra of the polymers showed two distinct absorption peaks in the ranges 350 - 460 nm and 560 - 600 nm, which arose from the ${\pi}-{\pi}^*$ transition of oligothiophene units and intramolecular charge transfer (ICT) between a quinoxaline acceptor and thiophene donor. The HOMO levels of the polymer ranged from -5.37 to -5.17 eV and the LUMO levels ranged from -3.67 to -3.45 eV. The electrochemical bandgaps of PQx2T, PQx4T, and PQx6T were 1.70, 1.71, and 1.72 eV, respectively, thus yielding low bandgap behavior. PQx2T, PQx4T, and PQx6T had open circuit voltages of 0.58, 0.42, and 0.47 V, and short circuit current densities of 2.9, 5.29 and 9.05 mA/$cm^2$, respectively, when $PC_{71}BM$ was used as an acceptor. For the solar cells with PQx2T-PQx6T:$PC_{71}BM$ (1:3) blends, an increase in performance was observed in going from PQx2T to PQx6T. The power conversion efficiencies of PQx2T, PQx4T, and PQx6T devices were found to be 0.69%, 0.73%, and 1.80% under AM 1.5 G (100 mW/$cm^2$) illumination.

Nanotube-based Dye-sensitized Solar Cells

  • Kim, Jae-Yup;Park, Sun-Ha;Choi, Jung-Woo;Shin, Jun-Young;Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.71-71
    • /
    • 2011
  • Dye-sensitized solar cells (DSCs) have drawn great academic attention due to their potential as low-cost renewable energy sources. DSCs contain a nanostructured TiO2 photoanode, which is a key-component for high conversion efficiency. Particularly, one-dimensional (1-D) nanostructured photoanodes can enhance the electron transport for the efficient collection to the conducting substrate in competition with the recombination processes. This is because photoelectron colletion is determined by trapping/detrapping events along the site of the electron traps (defects, surface states, grain boundaries, and self-trapping). Therefore, 1-D nanostructured photoanodes are advantageous for the fast electron transport due to their desirable features of greatly reduced intercrystalline contacts with specified directionality. In particular, anodic TiO2 nanotube (NT) electrodes recently have been intensively explored owing to their ideal structure for application in DSCs. Besides the enhanced electron transport properties resulted from the 1-D structure, highly ordered and vertically oriented nanostructure of anodic TiO2 NT can contribute additional merits, such as enhanced electrolyte diffusion, better interfacial contact with viscous electrolytes. First, to confirm the advantages of 1-D nanostructured material for the photoelectron collection, we compared the electron transport and charge recombination characteristics between nanoparticle (NP)- and nanorod (NR)-based photoanodes in DSCs by the stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV). We confirmed that the electron lifetime of the NR-based photoanode was much longer than that of the NP-based photoanode. In addition, highly ordered and vertically oriented TiO2 NT photoanodes were prepared by electrochemical anodization method. We compared the photovoltaic properties of DSCs utilizing TiO2 NT photoanodes prepared by one-step anodization and two-step anodization. And, to reduce the charge recombination rate, energy barrier layer (ZnO, Al2O3)-coated TiO2 NTs also applied in DSC. Furthermore, we applied the TiO2 NT photoanode in DSCs using a viscous electrolyte, i.e., cobalt bipyridyl redox electrolyte, and confirmed that the pore structure of NT array can enhance the performances of this viscous electrolyte.

  • PDF

Donor-π-Acceptor Type Diphenylaminothiophenyl Anthracene-mediated Organic Photosensitizers for Dye-sensitized Solar Cells

  • Heo, Dong Uk;Kim, Sun Jae;Yoo, Beom Jin;Kim, Boeun;Ko, Min Jae;Cho, Min Ju;Choi, Dong Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1081-1088
    • /
    • 2013
  • Two new metal-free organic dyes bridged by anthracene-mediated ${\pi}$-conjugated moieties were successfully synthesized for use in a dye-sensitized solar cell (DSSC). A N,N-diphenylthiophen-2-amine unit in these dyes acts as an electron donor, while a (E)-2-cyano-3-(thiophen-2-yl)acrylic acid group acts as an electron acceptor and an anchoring group to the $TiO_2$ electrode. The photovoltaic properties of (E)-2-cyano-3-(5-((10-(5-(diphenylamino)thiophen-2-yl)anthracen-9-yl)ethynyl)thiophen-2-yl)acrylic acid (DPATAT) and (E)-2-cyano-3-(5'-((10-(5-(diphenylamino)thiophen-2-yl)anthracen-9-yl)ethynyl)-2,2'-bithiophen-5-yl)acrylic acid (DPATABT) were investigated to identify the effect of conjugation length between electron donor and acceptor on the DSSC performance. By introducing an anthracene moiety into the dye structure, together with a triple bond and thiophene moieties for fine-tuning of molecular configurations and for broadening the absorption spectra, the short-circuit photocurrent densities ($J_{sc}$), and open-circuit photovoltages ($V_{oc}$) of DSSCs were improved. The improvement of $J_{sc}$ in DSSC made of DPATABT might be attributed to much broader absorption spectrum and higher molecular extinction coefficient (${\varepsilon}$) in the visible wavelength range. The DPATABT-based DSSC showed the highest power conversion efficiency (PCE) of 3.34% (${\eta}_{max}$ = 3.70%) under AM 1.5 illumination ($100mWcm^{-2}$) in a photoactive area of $0.41cm^2$, with the $J_{sc}$ of $7.89mAcm^{-2}$, the $V_{oc}$ of 0.59 V, and the fill factor (FF) of 72%. In brief, the solar cell performance with DPATABT was found to be better than that of DPATAT-based DSSC.

Preparation of nanoparticles CuInSe2 absorber layer by a non-vacuum process of low cost cryogenic milling (저가의 cryogenic milling 비진공법을 이용한 나노입자 CuInSe2 광흡수층 제조)

  • Kim, Ki-Hyun;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • Chalcopyrite material $CuInSe_2$ (CIS) is known to be a very prominent absorber layer for high efficiency thin film solar cells. Current interest in the photovoltaic industry is to identify and develop more suitable materials and processes for the fabrication of efficient and cost-effective solar cells. Various processes have been being tried for making a low cost CIS absorber layer, this study obtained the CIS nanoparticles using commercial powder of 6 mm pieces for low cost CIS absorber layer by high frequency ball milling and cryogenic milling. And the CIS absorber layer was prepared by paste coating using milled-CIS nanoparticles in glove box under inert atmosphere. The chalcopyrite $CuInSe_2$ thin films were successfully made after selenization at the substrate temperature of $550^{\circ}C$ in 30 min, CIS solar cell of Al/ZnO/CdS/CIS/Mo structure prepared under various deposition process such as evaporation, sputtering and chemical vapor deposition respectively. Finally, we achieved CIS nanoparticles solar cell of electric efficient 1.74 % of Voc 29 mV, Jsc 35 $mA/cm^2$ FF 17.2 %. The CIS nanoparticles-based absorber layers were characterized by using EDS, XRD and HRSEM.

Synthesis and Characterization of π-Conjugated Polymer Based on Phthalimide Derivative and its Application for Polymer Solar Cells (프탈이미드 유도체를 기본으로 하는 공액고분자의 합성과 특성, 그리고 태양전지의 적용)

  • Do, Thu Trang;Ha, Ye Eun;Kim, Joo Hyun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.694-701
    • /
    • 2013
  • A new copolymer named T-TI24T (poly((5,5-(2-butyl-5,6-bisdecyloxy-4,7-di-thiophen-2-yl-isoindole-1,3-dione))- alt-(2,5-thiophene))) based on phthalimide derivative and thiophene is synthesized by the Stille-coupling reaction. The polymer shows relatively high number average molecular weight of 86500 g/mol with good solubility in common organic solvents such as chloroform, 1,2-dichlorobenzene, and toluene and is thermally stable up to $380^{\circ}C$. Besides, it possesses a relatively low highest occupied molecular orbital (HOMO) energy level of -5.33 eV, promising the high open circuit voltage ($V_{oc}$) for photovoltaic applications. Active layer solution of polymer T-TI24T-as a donor and (6)-1-(3-(methoxycarbonyl)- {5}-1-phenyl[5,6]-fullerene (PCBM)-as an acceptor in different weight ratios is applied to fabricate the polymer solar cell devices. The ratio of polymer/PCBM affects the solar cell efficiency and the best performance exhibits in the device with polymer/PCBM = 1:3 (w/w), which shows a power conversion efficiency (PCE) of 0.199% and a $V_{oc}$ of 0.99 V, respectively. Even though the device shows the very low PCE, the $V_{oc}$ is higher than that of well known bulk heterojunction type solar cell based on P3HT:PC61BM (c.a. 0.5 V).

Recovery of Silver from Nitrate Leaching Solution of Silicon Solar Cells (실리콘 태양전지 질산침출액에서 LIX63를 이용한 은(Ag) 회수)

  • Cho, Sung-Yong;Kim, Tae-Young;Sun, Pan-Pan
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2021
  • Spent photovoltaic module is one of the important resource of silver, while related research concerning silver recovery remains limited. In our previous research, HNO3 was utilized to dissolve Ag(I) and Al(III) from the spent silicon solar cells. In order to recover Ag(I) from the leachate of a silicon solar cell, the present study made use of a nitrate solution containing Ag(I) and Al(III), which was subjected to a solvent extraction process with 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX63). Ag(I) was selectively extracted with LIX63 over Al(III) from the nitrate leach solution. Subsequently, quantitative stripping of Ag(I) from the loaded LIX63 was performed by using 20% ammonia water. The McCabe-Thiele plots for the extraction and stripping isotherms of Ag(I) were also constructed. Extraction and stripping simulation tests confirmed an Ag(I) extraction and stripping efficiency of >99.99% and 98.9%, respectively with high purity Ag (99.998%) and Al (99.99%) solution. A process flow sheet for Ag(I) recovery from the nitrate leach solution was proposed.

Novel 4,7-Dithien-2-yl-2,1,3-benzothiadiazole-based Conjugated Copolymers with Cyano Group in Vinylene Unit for Photovoltaic Applications

  • Kim, Jin-Woo;Heo, Mi-Hee;Jin, Young-Eup;Kim, Jae-Hong;Shim, Joo-Young;Song, Su-Hee;Kim, Il;Kim, Jin-Young;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.629-635
    • /
    • 2012
  • Two novel conjugated copolymers utilizing 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT) coupled with cyano (-CN) substituted vinylene, as the electron deficient moeity, have been synthesized and evaluated in bulk heterojunction solar cell. The electron deficient moeity was coupled with carbazole and fluorene unit by Knoevenagel condition to provide poly(bis-2,7-((Z)-1-cyano-2-(5-(7-(2-thienyl)-2,1,3-benzothiadiazol-4-yl)-2-thienyl)ethenyl)-alt-9-(1-octylnonyl)-9H-carbazol-2-yl-2-butenenitrile) (PCVCNDTBT) and poly(bis-2,7-((Z)-1-cyano-2-(5-(7-(2-thienyl)-2,1,3-benzothiadiazol-4-yl)-2-thienyl)ethenyl)-alt-9,9-dihexyl-9H-fluoren-2-yl) (PFVCNDTBT). The optical band gaps of PCVCNDTBT (1.74 eV) and PFVCNDTBT (1.80 eV) are lower than those of PCDTBT (1.88 eV) and PFVDTBT (2.13 eV), which is advantageous to provide better coverage of the solar spectrum in the longer wavelength region. The high $V_{oc}$ value of the PSC of PCVCNDTBT (~0.91 V) is attributed to its lower HOMO energy level ( 5.6 eV) as compared to PCDTBT ( 5.5 eV). Bulk heterojunction solar cells based on the blends of the polymers with [6,6]phenyl-$C_{61}$-butyric acid methyl ester ($PC_{61}BM$) gave power conversion efficiencies of 0.76% for PCVCNDTBT under AM 1.5, 100 mW/$cm^2$.

An Experiment Study on Manufacturing process of BIPV Module (BIPV모듈의 제조공정에 관한 실험적 연구)

  • An, Youngsub;Kim, Sungtae;Lee, Sungjin;Yoon, Jongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.54-54
    • /
    • 2010
  • In this study, the correlation between temperature and the gel-content of the module were analyzed through experiments. Amorphous thin-film solar cell used in this experiment has a visible light transmission performance of 10%. In addition, ethylene vinyl acetate(EVA) film and the clear glass have been used for the modulation. The most important process is to laminate the module in the manufacturing process of BIPV(Building integrated photovoltaic) module. Setting parameters of laminator in the lamination process are temperature, pressure and time. Setting conditions significantly affect the durability, watertightness and airtightness of module. The most important factor in the setting parameters is temperature to satisfy the gel-contents. The bottom and top surface temperature of module are measured according to setting temperature of laminator. The results showed $145^{\circ}C$ of max temperature of the bottom surface and $128^{\circ}C$ of max temperature of top surface on the module at the temperature condition of $160^{\circ}C$. And at the another temperature condition of laminator with $150^{\circ}C$, the max temperature do bottom and top are $117^{\circ}C$ and $134^{\circ}C$ respectively. The temperature difference between bottom and top of the module occurred, that is because heat has been blocked by the clear glass and the bottom of the cells absorb the heat from the laminator. In this particular, the temperature difference between setting temperature of the laminator and the surface temperature of the module showed $15^{\circ}C$, because the heat of laminator plate is transferred to the surface of the module and heat is lost at this time. As a results, gel-content showed 94.8%, 88.7% and 81.7% respectively according to the setting temperature $155^{\circ}C$, $150^{\circ}C$ and $145^{\circ}C$ of the laminator. In conclusion, the surface temperature of module increases, the gel-contents is relatively increased. But if the laminator plate temperature is too high, the gel-content shows rather decline in performance. Furthermore, the temperature difference between setting temperature and the surface temperature of the module is affected by laminating machine itself and the temperature of module should be considered when setting the laminator.

  • PDF

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering (RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구)

  • Ha, Rin;Kim, Shin-Ho;Lee, Hyun-Ju;Park, Young-Bin;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

Performance Analysis of the $TiO_2$ Dye-Sensitized Solar Cell according to Seasonal Changes (계절적 변화에 따른 $TiO_2$ 염료감응형 태양전지의 발전 성능 분석)

  • Moon, Byeong Eun;Choi, Eun Gyu;Kim, Jong Goo;Ryou, Young Sun;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.221-228
    • /
    • 2014
  • In this study, we evaluated the efficiency of the dye-sensitized solar cell, through an analysis of the amount of energy and solar radiation according to the season. Solar array was installed next to a greenhouse in Gyeongsang National University (Latitude : N $35^{\circ}$ 9' 9.20", Longitude : E $128^{\circ}$ 5' 44.90", Altitude : 52 m), over a period of four months between August 2012 and February 2013, and solar radiation and generated electrical energy was measured and compared. The values was the greatest in October, showing that the vertical solar radiation on panel area was about 1,013.03MJ and the amount of generated power was about 4.87 kWh. The lowest values were obtained in November, showing that the vertical solar radiation on the panel area was about 755.25MJ and the amount of generated power was about 3.34 kWh. The average efficiency values were 3.12% in August, 2.60% in October, 2.39% in November, and 2.23% in February, respectively. Results of the study would be used as basic data when applying dye-sensitized solar cells to greenhouses in the future.