• Title/Summary/Keyword: Photovoltaic cell

Search Result 1,088, Processing Time 0.029 seconds

Poly-Si Thin Film Solar Cells by Hot-wire CVD

  • Lee, J.C.;Chung, Y.S.;Kim, S.K.;Yoon, K.H.;Song, J.S.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1034-1037
    • /
    • 2003
  • Microcrystalline silicon(c-Si:H) thin-film solar cells are prepared with intrinsic Si-layer by hot wire CVD. The operating parameters of solar cells are strongly affected by the filament temperature ($T_f$) during intrinsic layer. Jsc and efficiency abruptly decreases with elevated $T_f$ to $1400^{\circ}C$. This deterioration of solar cell parameters are resulted from increase of crystalline volume fraction and corresponding defect density at high $T_f$. The heater temperature ($T_h$) are also critical parameter that controls device operations. Solar cells prepared at low $T_h$ ($<200^{\circ}C$) shows a similar operating properties with devices prepared at high $T_f$, i.e. low Jsc, Voc and efficiency. The origins for this result, however, are different with that of inferior device performances at high $T_f$. In addition the phase transition of the silicon films occurs at different silane concentration (SC) by varying filament temperature, by which highest efficiency with SC varies with $T_f$.

  • PDF

Microcrystalline Silicon Thin-film(${\mu}c$-Si:H) and Solar Cells prepared at Low Temperature by 60MHz PECVD (60MHz PECVD법에 의한 ${\mu}c$-Si:H 박막의 저온증착 및 태양전지 응용)

  • Lee, J.C.;Chung, Y.S.;Kim, S.K.;Yoon, K.H.;Song, J.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1595-1597
    • /
    • 2003
  • This paper presents the deposition of ${\mu}c$-Si:H thin-film and fabrication of a solar cell by VHF-PECVD method. The ${\mu}c$-Si:H thin films and pin-type solar cells are fabricated using multi-chamber cluster tool system. A 7.4% conversion efficiency was achieved from ${\mu}c$-Si:H thin film solar cells with total thickness less than $5{\mu}m$. The physical characteristic was measured by Raman spectroscopy, Solar cell characteristic was measured under AM1.5 illumination.

  • PDF

A Study on Bypass Characteristics for Photovoltaic Module (태양광모듈 바이패스 특성에 관한 연구)

  • Chae, Myoung-Suk;Suh, Hun-Young
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.79-80
    • /
    • 2014
  • In this paper, to make sure that the photovoltaic solar cell module of the system can be normal for output in each solar cell module, input and output unit is installed in the bypass device, and then through the voltage and current monitoring to determine abnormality of the solar cell module, in the case of abnormal occurring, the bypass device can be pass to the next solar module of the serial structure.

  • PDF

Improving the effectiveness of a photovoltaic system by cooling on the surface of photovoltaic cells (태양광발전 시스템 효율향상을 위한 셀 표면 냉각에 관한 연구)

  • Jin, Joo-Seok;Yu, Sang-Phil;Kim, Yi-Hyun;Jeong, Seong-Dae;Seo, Yong-Seog;Jeong, Nam-Jo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.183-186
    • /
    • 2009
  • The crystalline silicon solar cell was one of the first to be developed and it is still the most widely used type. The photovoltaic cells will exhibit long-term degradation if the temperature exceed a certain limit. The purpose of this study is to investigate the possible of improving the performance of a photovoltaic cooling system. According to the results of the experiment, the thermal degradation of 44.63degrees was observed by cooling on the surface of photovoltaic cells. It is a decrease of 22.215percent of generating power. It is shown that photovoltaic cooling system is effected on improving the effectiveness of a photovoltaic out of power.

  • PDF

Optoelectric properties of gate-tunable n-MoS2/n-WSe2 heterojunction with proper electrode metals

  • Lee, Seom-Gyun;Park, Min-Ji;Yu, Gyeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.332.2-332.2
    • /
    • 2016
  • Two dimensional transition-metal dichalcogenides (TMDs) semiconductors are attractive materials for optoelectric devices because of their direct energy bandgap and transparency. To investigate the feasibility of transparent p-n junctions, we have fabricated a p-n heterojunction consisting of p-type WSe2 and n-type MoS2 flakes since WSe2 and MoS2 with proper electrode metals exhibit p-type and n-type behaviors, respectively. These heterojunctions exhibits gate-tunable rectifying behaviors and photovoltaic effects (ECE ~ 0.2%) indicating that p-n junctions were formed. In addition, photocurrent and photovoltaic effects were observed under light illumination, which were dependent on the gate voltage. In addition, the photocurrent mapping images indicate that the photovoltaic effects comes from the junction area. Possible origins of gate-tunability are discussed.

  • PDF

Develpment of Textile-based Organic Solar Cell

  • Lee, Seung-U;Kim, Yeong-Min;Jeon, Ji-Hun;Lee, Yeong-Hun;Divij, Bhatia;Choe, Deok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.460-460
    • /
    • 2014
  • Organic photovoltaic cells (OPV) have been extensively studied due to their unique properties such as flexibility, light-weight, easy processability, cost-effectiveness, and being environmental friendly. These advantages make them an attractive candidate for application in various novel fields and promising development with new features. Photovoltaic cell-integrated textiles have greatly attractive features as a power source for the smart textile solutions, and OPV is most ideal form factor due to advantage of flexibility. In this study, we develop a textile-based OPV through various experimental methods and we suggest the direction for the design of the photovoltaic textile. We used a textile electrode and tried to various layouts for textile-based OPV. Finally, we determined the contact area by using Hertzian theory for the calculation of power conversion efficiency (PCE). Based on the results of calculation, the short circuit current density, Isc, was $13.11mA/cm^2$ under AM 1.5condition and the PCE was around 2.5%.

  • PDF

The Doping Profile Modeling of Crystalline Silicon Solar Cell with PC1D simulation (PC1D 시뮬레이션을 이용한 결정질 실리콘 태양전지의 도핑 프로파일 모델링)

  • Choi, Sung-Jin;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.149-153
    • /
    • 2011
  • The PC1D is widely used for modeling the properties of crystalline silicon solar cell. Optimized doping profile in crystalline silicon solar cell fabrication is necessary to obtain high conversion efficiency. Doping profile in the forms of a uniform, gaussian, exponential and erfc function can be simulated using the PC1D program. In this paper, the doping profiles including junction depth, dopant concentration on surface and the form of doping profile (gaussian, gaussian+erfc function) were changed to study its effect on electrical properties of solar cell. As decreasing junction depth and doping concentration on surface, electrical properties of solar cell were improved. The characteristics for the solar cells with doping profile using the combination of gaussian and erfc function showed better open-circuit voltage, short-circuit current and conversion efficiency.

  • PDF

Research Plan to improve Power Generation Efficiency of Photovoltaic Units using Photovoltaic Module Cooling System (태양광모듈 냉각장치를 이용한 태양광발전장치 발전효율 향상을 위한 연구방안)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.199-204
    • /
    • 2020
  • In case of the silicon solar panel being used in Korea, the production specification is designed to give maximum output at the limit of -0.5 to 0.05℃, so the output of 0.45~0.55% decreases when the temperature rises by 1℃. As a result, the photovoltaic power generation is reduced according to the surface temperature rise of the photovoltaic module due to the characteristics of the solar cell. The decrease in output reduces the efficiency of photovoltaic power generation, and if the efficiency decreases, the result is that the profit of electricity sales according to the amount of photovoltaic power generation decreases. Therefore, this paper proposes a method of spraying cooling air to the lower (or surrounding) of the photovoltaic module when it is identified above the set temperature by the temperature detection sensor. In addition, the amount of power generated is increased by utilizing the lost solar energy, and by applying cooling function through cooling air, the power generation can be further increased.

Photovoltaic Power Generation Control by A New Buck-Boost chopper circuit (새로운 승강압 초퍼회로에 의한 태양광발전제어)

  • Kim, Y.C.;Byun, H.G.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2177-2180
    • /
    • 1997
  • The solar cell has an optimum operating point to be able to got maximum power. To obtain maximum power from Photovoltaic array, hotovoltaic power system usually requres maximum power point c tracking controller. The output characteristics of solar cell are nonlinear, and these characteristics vary with load solar insolation, solar cell temperature. Therefore the tracking control of maximum power point is the com-plicated problem. This paper presents power characteristics of residential Photovoltaic system applying a buck-boost conversion system.

  • PDF

Renewable Source and Hybrid System Modeling for Smart Grid (스마트그리드를 위한 신재생에너지원과 하이브리드시스템 모델링)

  • Cho, Jae-Hoon;Hong, Won-Pyo;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.109-121
    • /
    • 2010
  • Recently, smart grid for solving energy problems have been receiving growing attention. Also, renewable energy sources such as photovoltaic and fuel cell as future energy for realizing smart grid have been widely studied. On the other hand, hybrid structures have been proposed since the output power of these renewable energy sources is usually dependent on weather conditions. This paper proposes a hybrid system involving a proper photovoltaic in the hybrid system, Polymer Elecrolyte Membrane Fuel Cell with water electrolyzer and ultracapacitor. The results of simulation and output of the proposed model are established and analysed by Matlab/Simulink and SimPowerSystems.