• Title/Summary/Keyword: Photovoltaic PCS (Power Conditioning System)

Search Result 86, Processing Time 0.026 seconds

Optimal Design of Notch Filter in Photovoltaic Inverter (태양광 인버터의 노치 필터 최적 설계)

  • Kim, Yong-Rae;Heo, Cheol-Young;Lee, Young-Kwoun;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.81-92
    • /
    • 2019
  • When Photovoltaic inverter is connected to grid and used as PVPCS (Photovoltaic Power Conditioning System), 120 Hz AC ripple occurs at the dc-link capacitor voltage. This AC ripple reduces the efficiency of PVPCS and shortens the lifetime of the capacitor. In this paper, we design a notch filter to remove AC ripple. As a result, the AC voltage ripple was removed from the dc link and the THD of the PVPCS output current with the notch filter was lowered. This notch filter is determined by the damping coefficient, the bandwidth coefficient, and the switching frequency. Among these, the switching frequency determines the switching loss and the size of the LC filter, and the PVPCS with the high switching frequency has a greater efficiency loss due to the switching loss than the efficiency improvement by the notch filter. Therefore, it is important to set the optimum switching frequency in the PVPCS with the notch filter applied. In this paper, THD and switching loss of PVPCS output current with notch filter are calculated through simulation, and cost function to calculate optimum switching frequency through data is proposed.

Analysis of Utility Interactive 3-phase Photovoltaic Power Conditioning System (계통연계형 3상 태양광 PCS 기술 분석)

  • Lee, Sang-Hoey;Cha, Han-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1124_1125
    • /
    • 2009
  • 이 논문에서는 멀티스트링 타입 계통연계형 3상 태양광 발전 시스템 개발 과정중 인버터 파트에 필요한 기본적인 기술들을 살펴보고 검증해 보았다. 계통연계에 필요한 위상추종제어 3상 DPLL(Digital Phase Locked Loop)과 DC 링크 전압제어 그리고 계통전류 제어기의 구조와 비간섭전류제어 등을 살펴보고 무변압기형에 사용되는 3상인버터의 L-C-L 필터 설계 방법을 살펴보고 L-C 필터와 비교하여 살펴보았다. 최종적으로 앞에서 언급하였던 제어기와 이론 등을 시뮬레이션으로 검증하였으며 현재 개발 중인 프로토타입 하드웨어 설계에 대해서도 기술하였다.

  • PDF

1kW Photovoltaic Converter with High Frequency Transformer (1kW급 태양광발전용 고주파링크 방식의 컨버터)

  • Yu, B.G.;Lee, K.O.;Yu, G.J.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1087-1088
    • /
    • 2008
  • 계통연계형 태양광발전 시스템을 구성하고 있는 전력변환 장치인 PCS(power conditioning system)은 성능, 효율, 가격, 그리고 보호 및 협조 문제에 따라 여러 가지 형태가 있다. 본 논문에서는 고주파 변압기를 이용한 컨버터에 대하여 제안한다. 이 시스템은 FB(full bridge) 컨버터, 고주파 변압기, 다이오드 정류기, DC link 필터, PWM 인버터 그리고 저역통과필터로 이루어져 있다. 고주파 변압기를 이용한 컨버터의 스위칭 주파수는 10kHz로 Uniploar PWM 방식을 이용하였고, 변압기의 2차단에 다이오드 정류기와 커패시터를 통하여 DC로 정류한다. 고주파 변압기를 이용한 컨버터의 제어는 전압형 전류제어로 MPPT 알고리즘에 의한 입력전류제어를 담당하고, DC link 전압의 제어는 Unipolar PWM 인버터에서 제어를 담당한다. 논문에서는 고주파 변압기를 이용한 FB Conveter의 제어 방법에 대하여 시뮬레이션을 통하여 검증하고자 한다.

  • PDF

PR Controller Based Current Control Scheme for Single-Phase Inter-Connected PV Inverter (PR제어기를 이용한 단상 계통 연계형 태양광 인버터 설계)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3587-3593
    • /
    • 2009
  • Nowadays, the PV systems have been focused on the interconnection between the power source and the grid. The PV inverter, either single-phase or three-phase, can be considered as the core of the whole system because of an important role in the grid-interconnecting operation. An important issue in the inverter control is the load current regulation. In the literature, the Proportional+Integral (PI) controller, normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an ac system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. By comparison with the PI controller, the Proportional+Resonant (PR) controller can introduce an infinite gain at the fundamental ac frequency; hence can achieve the zero steady-state error without requiring the complex transformation and the dq-coupling technique. In this paper, a PR controller is designed and adopted for replacing the PI controller. Based on the theoretical analyses, the PR controller based control strategy is implemented in a 32-bit fixed-point TMS320F2812 DSP and evaluated in a 3kW experimental prototype Photovoltaic (PV) power conditioning system (PCS). Simulation and experimental results are shown to verify the performance of implemented control scheme in PV PCS.

Reactive Power Variation Method for Anti-islanding Using Digital Phase-Locked-Loop (DPLL을 이용한 능동적 단독운전방지를 위한 무효전력변동법)

  • Lee, Ki-Ok;Yu, Byung-Gu;Yu, Gwon-Jong;Choi, Ju-Yeop;Choy, Ick
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, these have raised potential problems of network protection on electrical power system. One of the numerous problems is an Islanding phenomenon. There has been an argument that it may be a non-issue in practice because the probability of islanding is extremely low. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an islanding can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficiently to cause a trip, plus the time required to execute a trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. Third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an islanding. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. Therefore the verification of anti-islanding performance is strongly needed. In this paper, improved RPV method is proposed through considering power quality and anti-islanding capacity of grid-connected single-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation results are verified.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.