• 제목/요약/키워드: Photovoltaic (PV) power system

검색결과 770건 처리시간 0.029초

계통연계형 태양광발전시스템의 태양광전지모델 시뮬레이션 (A Photovoltaic Device Model for Grid-connected PV System Simulation)

  • 켐벨 라이언;김학만;이종수;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.18-19
    • /
    • 2006
  • The recent interest in distributed generation (DG) due to the opening of the electricity market and the need for alternatives to conventional fossil fuel-based electricity generation has created renewed interest in grid-connected photovoltaic(PV) systems. Many studies are being performed at the power system level to examine the impacts of grid-connected PV systems and several models for PV arrays have been proposed in the literature. However, the complexity of these models and difficulties of implementing them in various software programs can be deterrents to their use. This paper proposes a robust and flexible PV device model suitable for dynamic and transient studies where the PV array's non-linear DC characteristics are important. The model's implementation in software is straightforward and it can even be constructed using standard software library components, as demonstrated using PSCAD/EMTDC.

  • PDF

태양광모듈의 모델링 및 성능해석 결과비교 (A modeling and performance comparison of photovoltaic module)

  • 소정훈;유병규;황혜미;유권종;최주엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1128-1129
    • /
    • 2008
  • The detailed modeling method of photovoltaic (PV) module are useful to perform detailed analysis of PV array performance for changing meteorological conditions, verify actual rated power of PV system sizing and, determine the optimal design of PV system and components. This paper investigates a modeling approach of PV module performance in terms of irradiance and temperature changes and compared measured with simulated value of PV modules.

  • PDF

태양전지 변환효율 보정계수 도입에 의한 태양발전시스템 발전량 예측 (Photovoltaic System Output Forecasting by Solar Cell Conversion Efficiency Revision Factors)

  • 이일룡;배인수;심헌;김진오
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권4호
    • /
    • pp.188-194
    • /
    • 2005
  • There are many factors that affect on the system output of Photovoltaic(PV) power generation; the variation of solar radiation, temperature, energy conversion efficiency of solar cell etc. This paper suggests a methodology for calculation of PV generation output using the probability distribution function of irradiance, PV array efficiency and revision factors of solar cell conversion efficiency. Long-term irradiance data recorded every hour of the day for 11 years were used. For goodness-fit test, several distribution (unctions are tested by Kolmogorov-Smirnov(K-S) method. The calculated generation output with or without revision factors of conversion efficiency is compared with that of CMS (Centered Monitoring System), which can monitor PV generation output of each PV generation site.

Jerk 함수를 적용한 태양광 스트링 내의 노후화 모듈 검출 기법 (Detection of Aging Modules in Solar String with Jerk Function)

  • 손한별;박성미;박성준
    • 전력전자학회논문지
    • /
    • 제24권5호
    • /
    • pp.356-364
    • /
    • 2019
  • In this study, major problems, such as licensing problems due to civil complaints, deterioration of facility period, and damage of modules, are exposed to many problems in domestic businesses. Particularly, the photovoltaic (PV) modules applied to early PV systems have been repaired and replaced over the past two decades, and a new module-based aging detection method is needed to expand the maintenance market and stabilize and repair power supplies. PV modules in a PV system use a string that is configured in series to generate high voltage. However, even if only one module of the solar modules connected in series ages, the power generation efficiency of the aged string is reduced. Therefore, we propose a topology that can measure the instantaneous PV characteristic curve to determine the aging module in the solar string and the aging judgment algorithm using the measured PV characteristic curve.

태양광에너지 중심의 신재생에너지 기술경제학 모델링 연구 (The technical-economic study of solar PV and renewable energy)

  • 이문수;이민진;이영희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.136.1-136.1
    • /
    • 2011
  • An energy modeling analysis method currently has been considered as a new approach for energy policy research, because the importance of renewable energy use has been emphasized more and more. This study used RETScreen model as a clean energy decision making methodology for adaptation to climate change and elimination of various pollutions. This modeling method includes five step standard analysis; energy model, cost analysis, GHG analysis, financial analysis, and sensitivity & risk analysis and it also assesses both conventional and modern energy sources and technologies. This methodology for the photovoltaic(PV) energy modeling is used to evaluate the energy production, financial performance and GHG emissions reduction of photovoltaic projects. In addition, the PV application systems are classified into three basic applications; On-grid system, Off-grid system and water pumping system. This study assesses the renewable energy techno-economic modeling method with the feasibility analysis result of 10 MW PV power plant in Abu Dhabi in United Arab Emirates. Furthermore this study stresses the importance of renewable energy model research by applying to domestic PV power plant which is now in preparation.

  • PDF

Implementation of a Stand-alone Photovoltaic Pumping System with Maximum Power Point Tracking

  • Zhengming Zhao;Kunlun Chen;Liqiang Yuan
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.635-638
    • /
    • 2001
  • Photovoltaic (PV) pumping systems with maximum power point tracking (MPPT) technique aims at obtaining the highest possible power to the pump under various insolation and temperature, thus overcomes the mismatch between the photovoltaic panel and the pumping load. A simple method of tracking the maximum power points and forcing the system to operate close to these points is presented in this paper. The MC68HC908GP32 micro control unit (MCU) is employed to implement the proposed MPPT controller. Experimental results will also show the performances of the photovoltaic pumping system with the MPPT technique.

  • PDF

Proposed Distribution Voltage Control Method for Connected Cluster PV Systems

  • Lee, Kyung-Soo;Yamaguchi, Kenichiro;Kurokawa, Kosuke
    • Journal of Power Electronics
    • /
    • 제7권4호
    • /
    • pp.286-293
    • /
    • 2007
  • This paper proposes a distribution voltage control method when a voltage increase condition occurs due to reverse power flow from the clustered photovoltaic (PV) system. This proposed distribution voltage control is performed a by distribution-unified power flow controller (D-UPFC). D-UPFC consists of a hi-directional ac-ac converter and transformer. It does not use any energy storage component or rectifier circuit, but it directly converts ac to ac. The distribution model and D-UPFC voltage control using the ATP-EMTP program were simulated and the results show the voltage increase control in the distribution system.

태양광.풍력 복합발전시스템의 기상조건에 따른 발전특성 (Generation of electricity Characteristics with Weather Conditions of Photocoltaics-Wind Power Hybrid System)

  • 강기환;정영석;유권종;정명웅;송진수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2581-2583
    • /
    • 1999
  • The PV-Wind hybrid system was installed in the island where the solar and wind energy was compensated each other. The installed hybrid system, 10kWp-PV and 10kW-wind capacity, was monitored with the varying solar intensity and wind speed, under the minimum capacity of the storage battery.

  • PDF

Design and Implementation of Photovoltaic Power Conditioning System using a Current-based Maximum Power Point Tracking

  • Lee, Sang-Hoey;Kim, Jae-Eon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.606-613
    • /
    • 2010
  • This paper proposes a novel current-based maximum power point tracking (CMPPT) method for a single-phase photovoltaic power conditioning system (PV PCS) by using a modified incremental conductance method. The CMPPT method simplifies the entire control structure of the power conditioning system and uses an inherent current source characteristic of solar cell arrays. Therefore, it exhibits robust and fast response under a rapidly changing environmental condition. Digital phase locked loop technique using an all-pass filter is also introduced to detect the phase of grid voltage, as well as the peak voltage. Controllers of dc/dc boost converter, dc-link voltage, and dc/ac inverter are designed for coordinated operation. Furthermore, a current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. A 3 kW prototype PV PCS is built, and its experimental results are given to verify the effectiveness of the proposed control schemes.

태양광 컨버터 시스템의 과도응답 개선을 위한 비선형 적응제어 및 안정성 해석 (Nonlinear Adaptive Control and Stability Analysis for Improving Transient Response of Photovoltaic Converter Systems)

  • 조현철;유수복;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1175-1183
    • /
    • 2009
  • In photovoltaic(PV) generator systems, DC-DC converters are significantly considered for control system performance in power quality point of view. This paper presents a novel adaptive control method for DC-DC converters applied in PV generator systems. First, we derive a state-space average model of the converter system and then propose a reset control methodology to enhance transient response performance for time-varying PV systems. For estimating parameters of a reset control, a gradient descent optimization is utilized and an adjustment rule of them are derived respectively. An objective of the optimization is that characteristic equation of an augmented system model which is formed with an converter system model and an reset control is to trace a predefined polynomial given as a reference characteristic model. Next, we accomplish stability analysis by means of a well-known Lyapunov theory for nonlinear converter systems including time-varying voltage excitation from a PV generator. Numerical simulation demonstrates reliability of our control methodology and its superiority by comparison to a traditional control strategy.