• 제목/요약/키워드: Photovoltaic (PV)

검색결과 1,344건 처리시간 0.035초

태양광 발전의 성능향상을 위한 PV/T 시스템 개발 (Development of PV/T for Performance Improvement of Photovoltaic System)

  • 최정식;고재섭;정동화
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.173-181
    • /
    • 2011
  • 본 논문에서는 건물통합형 태양광 발전 시스템의 전기적 열적 성능을 얻기 위해 하이브리드 PV/T 모듈을 제시한다. 건물 외벽에 부착하는 BIPV 시스템은 태양광 발전 시 온도상승으로 인하여 시스템의 효율이 떨어진다. 이러한 문제점의 해결과 BIPV 시스템의 효율을 향상시키기 위해 수냉방식을 적용시키고 발생된 열은 온수 시스템에 사용된다. 수냉 냉각방식은 전력손실과 물의 온도를 고려한 유량제어 알고리즘을 이용하고 실증연구를 통하여 제시한 하이브리드 PV/T 모듈의 전기적 열적 성능을 확인하여 본 논문의 타당성을 입증한다.

슁글드 디자인 고출력 양면수광형 단결정 실리콘 태양광 모듈 제작 (Fabrication of Shingled Design Bifacial c-Si Photovoltaic Modules)

  • 박민준;김민섭;신진호;변수빈;정채환
    • Current Photovoltaic Research
    • /
    • 제10권1호
    • /
    • pp.1-5
    • /
    • 2022
  • Bifacial photovoltaic (PV) technology has received considerable attention in recent years due to the potential to achieve a higher annual energy yield compared to its monofacial PV systems. In this study, we fabricated the bifacial c-Si PV module with a shingled design using the conventional patterned bifacial solar cells. The shingled design PV module has recently attracted attention as a high-power module. Compared to the conventional module, it can have a much more active area due to the busbar-free structure. We employed the transparent backsheet for a light reception at the rear side of the PV module. Finally, we achieved a conversion power of 453.9 W for a 1300 mm × 2000 mm area. Moreover, we perform reliability tests to verify the durability of our Shingled Design Bifacial c-Si Photovoltaic module.

Battery와 Electrolyzer를 이용한 태양광 발전시스템 운영 (Operation of Photovoltaic Generation System with Battery and Electrolyzer)

  • 강기혁;김윤성;응웬칸록;원동준
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1994-2000
    • /
    • 2008
  • The output power of photovoltaic(PV) generation system is strongly affected by weather conditions. To make up for the defect of solar energy, energy storages such as battery and electrolyzer are usually integrated with photovoltaic cell. This paper focuses on the way to store energy surplus with battery and electrolyzer and to provide energy with battery. Photovoltaic generation system is modeled with PV cell, DC/DC converter, DC/AC inverter, battery and electrolyzer. The operation algorithm to regulate PV output power with battery and electrolyzer is suggested. The simulation results show that battery and electrolyzer effectively cooperate with each other to compensate the fluctuation of PV generation system.

2007년 세계 태양광발전산업 현황 (Status of Photovoltaics in the world)

  • 유권종;강기환;박경은;김현일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1132-1133
    • /
    • 2008
  • Amid the booming research on new and renewable energy, the photovoltaic(PV) industry has been growing around the PV advanced countries such as Japan, Germany, Europe and USA. In recent years, China became a strong performer in the world PV market share, increasing solar cell production rapidly. Both world solar cell and module production and installation rose steadily in 2007 like recent bumper years. In 2007, the PV industry produced 4.28GW and the installations reached a record high of 2.83GW, representing growth of 60percent over the previous year.

  • PDF

태양광발전 도시 프로젝트의 개발현황과 발전방향 고찰 (A Study on The development status and future of Photovoltaic Urban Project)

  • 김현일;서승직;박경은;강기환;유권종
    • 한국태양에너지학회 논문집
    • /
    • 제28권6호
    • /
    • pp.87-92
    • /
    • 2008
  • Buildings are responsible for approximately 50% of current carbon dioxide emissions. Energy planning at a town and city scale needs a strategic approach, supported by strong planning policies. The purpose of this study was to investigate the urban scale grid-connected photovoltaic(PV) system for urban residential and commercial sector applications. The integration of PV technology into roof of houses is an approach that is being championed in Germany, Japan and United states etc. In the Korea, PV roofing systems already are given the large number of houses which are projected to be built by 2012. However unlike germany and Japan, urban scale grid-connected PV system is not yet installed. The solar city which is installed building-integrated photovoltaic system is available to use of renewable energy sources such as solar to meet demand, instead of fossil fuels, with the goal of realizing an ecologically oriented energy supply.

발코니 일체형 태양광발전시스템의 발전성능 분석 (Analysis of Performance of Balcony Integrated PV System)

  • 김현일;강기환;박경은;소정훈;유권종;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.32-37
    • /
    • 2009
  • Photovoltaic(PV) permits the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of building integrated balcony PV system and analyzed both performance and problems of this system. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 74.7%.

태양광 발전 시스템용 AC 모듈 집적형 전력변환기의 구성 방식에 따른 손실 분석 (Loss Analysis according to Configuration Method of AC Module Integrated Converter for Photovoltaic System)

  • 강승현;손원진;안상준;이병국
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.311-318
    • /
    • 2020
  • A photovoltaic (PV) system uses an AC module integrated converter (MIC) to operate PV cells at a maximum power point (MPP) and for high efficiency. The MPP of a PV cell varies depending on partial shading conditions, and loss occurs differently according to the configuration method of the PV-MIC. Therefore, this study compares the losses of passive components and power semiconductors according to the partial shading conditions of the PV module. Theoretical loss analysis is performed using parameters for the datasheet and PSIM simulation results. Analysis results verify that the one-stage PV-MIC demonstrates high efficiency.

연속 광조사 조건에서의 태양전지모듈의 연간 최대출력 저하율 변화 예측 분석 (Analysis of Maximum Generating Power Drop of PV Module Under the Continuous Artificial Light Irradiation Test Condition)

  • 김경수;윤재호
    • Current Photovoltaic Research
    • /
    • 제6권3호
    • /
    • pp.69-73
    • /
    • 2018
  • PV system is consisted with PV module, inverter and BOS(balance of system). To have robustic operation more than 20 years, the expected and guaranteed durability and reliability of products should be met. Almost components of PV system are qualified through IEC standards at test laboratory. But the qualification certificate of product does not ensure long-term nondefective operation. PV module's expected life time is nowadays more than 20 years and annual maximum power degradation ratio would be less than -1%. But the power degradation ratio is basically based on real data more than several years' record. Developing test method for ensuring annual maximum power degradation ratio is very need because there are many new products every month with new materials. In this paper, we have suggested new test method under continuous artificial light irradiation test condition for analyze expected maximum power drop ratio.

다양한 외부 환경에서의 태양전지모듈의 열적 전기적 특성 평가 (Evaluation of Electric and Thermal Characteristics of Photovoltaic Module under Various Temperature and Irradiance Conditions)

  • 김경수;소정훈;강기환;유권종;윤순길
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.125-130
    • /
    • 2010
  • Normally, PV system is designed using local weather condition like lowest and highest temperature and irradiance. But this might give misleading results because it is not realistic data of PV module itself. To give more specific description of PV system, we tested photovoltaic(PV) modules' temperature, irradiance and maximum power generation characteristics from January to December in 2008 for 3kW PV system. From this, we could deeply analyze the accumulation temperature, electrical characteristics of PV module in various condition. So precise approach to PV system design can be done. The detail description is specified as the following paper.

결정질과 비정질 PV모듈의 자연광 스펙트럼에 따른 Isc의 변화 (Transition of Isc according to Natural Solar Spectrum on c-Si and a-Si PV Module)

  • 공지현;지양근;강기환;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.86-91
    • /
    • 2009
  • In this paper, we analyze the Transition of Isc by natural solar spectrum of c-Si and a-Si PV module. Commonly, performance of photovoltaic (PV) module is estimated under the standard test condition (STC). That is, solar irradiance $1kW/m^2$, solar spectrum distribution: AM1 5G, module temperature $25^{\circ}C$ This means it rarely meets actual outdoor conditions. The solar spectrum always changes. So it is rare to fit the standard solar spectrum AM1 5G defined in ASTM G173-03 or IEC 60904-3. Thus spectral response of PV module is different depending on the material. so we estimated the variation of Isc at every minutes by comparing c-Si PV module with a-si PV module for outdoor conditions.

  • PDF