• Title/Summary/Keyword: Photothrombosis

Search Result 7, Processing Time 0.022 seconds

Investigation of a Photothrombosis Inducing System for an Observation of Transient Variations in an in vivo Rat Brain

  • Oh, Sung Suk;Park, Hye Jin;Min, Han Sol;Kim, Sang Dong;Bae, Seung Kuk;Kim, Jun Sik;Ryu, Rae-Hyung;Kim, Jong Chul;Kim, Sang Hyun;Lee, Seong-jun;Kang, Bong Keun;Choi, Jong-ryul;Sohn, Jeong-woo
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.499-507
    • /
    • 2018
  • For the spatiotemporally aligned observation of photothrombosis induction and transient variations of in vivo brain stroke, we developed a novel photothrombosis inducing system compatible to a magnetic resonance imaging (MRI) system using nonmagnetic stereotaxic equipment. From the spatial point of view, the system provides a more reliable level of reproducibility of the photothrombosis in each brain. From the temporal point of view, from T1- and T2-weighted in vivo MR (magnetic resonance) images, the transient variations such as incidence, location, and size of the thrombosis are measured quantitatively. In addition, the final variation is observed in the ex vivo brain by TTC (Triphenyltetrazolium chloride) staining based on histological assay and utilized for the verification of the MR images. From the experimental result of the rat brain, the proposed system shows more reliable characteristics for transient variations of brain strokes.

Photochemically Induced Cerebral Ischemia in a Mouse Model

  • Park, Sung-Ku;Lee, Jung-Kil;Moon, Kyung-Sub;Joo, Sung-Pil;Kim, Jae-Hyoo;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.3
    • /
    • pp.180-185
    • /
    • 2006
  • Objective : Middle cerebral artery occlusion[MCAO] has widely been used to produce ischemic brain lesions. The lesions induced by MCAO tend to be variable in size because of the variance in the collateral blood supply found in the mouse brain. To establish a less invasive and reproducible focal ischemia model in mice, we modified the technique used for rat photo thrombosis model. Methods : Male C57BL/6 mice were subjected to focal cerebral ischemia by photothrombosis of cortical microvessels. Cerebral infarction was produced by intraperitoneal injection of Rose Bengal, a photosensitive dye and by focal illumination through the skull. Motor impairment was assessed by the accelerating rotarod and staircase tests. The brain was perfusion-fixed for histological determination of infarct volume four weeks after stroke. Results : The lesion was located in the frontal and parietal cortex and the underlying white matter was partly affected. A relatively constant infarct volume was achieved one month after photothrombosis. The presence of the photothrombotic lesion was associated with severe impairment of the motor performance measured by the rotarod and staircase tests. Conclusion : Photothrombotic infarction in mice is highly reproducible in size and location. This procedure can provide a simple method to produce cerebral infarction in a unilateral motor cortex lesion. In addition, it can provide a suitable model for study of potential neuroprotective and therapeutic agents in human stroke.

Activation of Matrix Metalloproteinases-9 after Photothrombotic Spinal Cord Injury Model in Rats

  • Jang, Jae-Won;Lee, Jung-Kil;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.4
    • /
    • pp.288-292
    • /
    • 2011
  • Objective : Matrix metalloproteinases (MMPs), especially MMP-2 and MMP-9 have been known to play an important role in secondary inflammatory reaction after spinal cord injury (SCI). The aim of this study was to investigate the expression and activity of MMP-2 and MMP-9 and to determine their relationship with disruption of endothelial blood-barrier after photochemically induced SCI in rats. Methods : Female Sprague-Dawley rats, weighing between 250 and 300 g (aged 8 weeks) received focal spinal cord ischemia by photothrombosis using Rose Bengal. Expressions and activities of MMP-2 and MMP-9 were assessed by Western blot and gelatin zymography at various times from 6 h to 7 days. Endothelial blood-barrier integrity was assessed indirectly using spinal cord water content. Results : Zymography and Western blot analysis demonstrated rapid up-regulation of MMP-9 protein levels in spinal cord after ischemic onset. Expressions and activities of MMP-9 showed a significant increased at 6 h after the photothrombotic ischemic event, and reached a maximum level at 24 h after the insult. By contrast, activated MMP-2 was not detected at any time point in either the experimental or the control groups. When compared with the control group, a significant increase in spinal cord water content was detected in rats at 24 h after photothrombotic SCI. Conclusion : Early up-regulation of MMP-9 might be correlated with increased water content in the spinal cord at 24 h after SCI in rats. Results of this study suggest that MMP-9 is the key factor involved in disruption of the endothelial blood-barrier of the spinal cord and subsequent secondary damage after photothrombotic SCI in rats.

Yangkyuksanhwa-Tang Attenuates Ischemic Brain Injury in a Focal Photothrombosis Stroke Model (뇌허혈 마우스모델에서 양격산화탕이 뇌 손상 완화에 미치는 효과)

  • Han, Do-Kyung;Pak, Malk-Eun;Kwon, Ok-Sun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1258-1266
    • /
    • 2019
  • Yangkyuksanhwa-Tang (YKSH), consisting of nine different herbs, is commonly used in Soyangin-type individuals with stroke, based on the Sasang Constitution Theory in Korea. However, no evidence has yet confirmed a beneficial effect of YKSH in ischemic stroke treatment. In this study, we investigated the effects of YKSH on ischemic brain injury in a mouse model of cerebral ischemia. Focal cerebral ischemia in mice was induced by photothrombosis, and behavioral recovery was evaluated. Infarct volume, inflammation, and newly generated cells were evaluated by histology and immunochemistry. YKSH treatment resulted in a significant recovery from the motor impairments induced by focal cerebral ischemia, as determined with wire grip and rotarod tests. YKSH treatment also decreased the infarct volume and the number of cells positive for tumor necrosis factor-${\alpha}$ and myeloperoxidase when compared with a vehicle-treated control group. By contrast, YKSH treatment considerably increased the number of cells positive for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1, as well as the number of cells doubly positive for Ki67/doublecortin when compared with the vehicle-treated group. These results suggest that YKSH treatment attenuated the infarct size by anti-inflammatory action, astrocyte and microglia activation, and neuronal proliferation, thereby facilitating neurofunctional recovery from a cerebral ischemic assault. YKSH could therefore be a potential treatment for neurofunctional restoration of the injured brains of patients with stroke.

Effects of Coptidis Rhizoma on the Anti-inflammation and Motor Recovery in Photothrombotic Brain Infarction Model in Rats (광화학적 뇌경색 백서 모델에서 황련의 항염증 및 운동기능 회복에 미치는 효과)

  • Lee, Su-Kyung;Lee, In;Shin, Sun-Ho;Kim, Eun-Young;Shin, Byung-Cheul
    • The Korea Journal of Herbology
    • /
    • v.24 no.1
    • /
    • pp.179-189
    • /
    • 2009
  • Objectives : Coptidis Rhizoma (Coptis japonica MAKINO; CR) is a well known crude drug as antimicrobial, antibacterial, anti-inflammatory, antioxidant activity. However, there is no study of the effect of CR on brain infarction and it's mechanism. The aim of this study was to investigate the effects on ischemic stroke induced by photothrombotic infarction by evaluating the functional & neuronal recovery after brain infarction. Materials & Methods : Male Sprague-Dawley rats (250-300 g) were induced photothrombotic brain infarction on sensorimotor cortex, and brain infarction volume by image J software (NIH, USA) after Nissl stain, also single pellet reaching task as a functional motor recovery were observed. After orally pretreated by CR (500 mg/kg) or normal saline as a sham control before 7 days from the time of photothrombotic infarction, rats were sacrificed. After then we analysed anti-inflammatory cytokines (TNF-$\alpha$, IL-6, IL-1$\beta$), by RT-PCR and ELISA method, and immunohistochemistry (GFAP, connexin-43) as a marker of neural plasticity. Results : CR (100, 250, 500 mg/kg) decreased the infarction volume dose-dependently, however the effect of 500mg/kg of CR (CR 500) showed the best (P=0.051). Also, CR 500 decreased the infarction volume time-dependently, the most effective time was 3-7 days after stroke. Photothrombosis increased inflammatory cytokines after infarction, CR 500 suppressed significantly mRNA expression of IL-1$\beta$, IL-6 and TNF-$\alpha$. In serum, CR 500 decreased the amount of IL-1$\beta$, 12h, 24h and 48h respectively (p < 0.05), also decreased that of IL-6 and TNF-$\alpha$, 12h respectively (p < 0.05) after infarction. The more astrocytes were observed and neural plasticity was facilitated in the rat brain of CR 500 than that of sham control in immunohistochemistry. Conclusions : This results suggest that CR decrease infarction volume and improve functional motor recovery in acute stage in photothrombotic ischemic infarction model in the mechanism of anti-inflammation and promoting neural plasticity.

Caffeic acid phenethyl ester protects against photothrombotic cortical ischemic injury in mice

  • Hwang, Sun Ae;Kim, Chi Dae;Lee, Won Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.101-110
    • /
    • 2018
  • In this study, we aimed to investigate the neuroprotective effects of caffeic acid phenethyl ester (CAPE), an active component of propolis purified from honeybee hives, on photothrombotic cortical ischemic injury in mice. Permanent focal ischemia was achieved in the medial frontal and somatosensory cortices of anesthetized male C57BL/6 mice by irradiation of the skull with cold light laser in combination with systemic administration of rose bengal. The animals were treated with CAPE (0.5-5 mg/kg, i.p.) twice 1 and 6 h after ischemic insult. CAPE significantly reduced the infarct size as well as the expression of tumor necrosis $factor-{\alpha}$, hypoxiainducible $factor-1{\alpha}$ monocyte chemoattractant protein-1, $interleukin-1{\alpha}$, and indoleamine 2,3-dioxygenase in the cerebral cortex ipsilateral to the photothrombosis. Moreover, it induced an increase in heme oxygenase-1 immunoreactivity and interleukin-10 expression. These results suggest that CAPE exerts a remarkable neuroprotective effect on ischemic brain injury via its anti-inflammatory properties, thereby providing a benefit to the therapy of cerebral infarction.

Effects of Dohongsamul-Tang on the Gene Expression of Photothrombotic Ischemia Mouse Model (도홍사물탕(桃紅四物湯)이 광화학적 뇌경색 마우스의 유전자 발현에 미치는 영향)

  • Cho, Kwon-Il;Kim, Hye-Yoon;Ko, Seok-Jae;Lee, Seong-Geun;Shin, Sun-Ho;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.645-661
    • /
    • 2009
  • The water extract of Dohongsamul-Tang(DHSMT) has been traditionally used to stroke and brain injuries in Oriental Medicine. The present study was designed to investigate the effects of DHSMT on the gene expression profile of cerebral infarction by cDNA microarray in photothrombotic ischemia mouse model. Photothrombotic ischemia was induced in stereotactically held male BALB/c mice using rose bengal and cold light. MRI was performed 24 hours after inducing photothrombosis using 1.5 T MRI and 47 mm surface coil to obtain T2-weighted, and contrast-enhanced images. After MRI test, animal was sacrificed and the brain sections were stained for hematoxylin and eosin and immunohistochemistry. MRI and histological analysis revealed that lesion of thrombotic ischemia was well induced in the cortex with the evidence of biological courses of infarction. The target area of thrombotic infarction was 1 mm anterior to bregma and 3 mm lateral to midline with 2 mm in diameter, which were decreased by administration of DHSMT. To assess gene expression pattern of cerebral infarction, mRNA was isolated and reacted with microarray chip(Agilant's DNA Microarray 44K). Scatter and MA plot analysis were performed to clustering of each functional genes. M value [M=log2(R/G), A={log2(R ${\times}$ G)}/2] was between -0.5 and +0.5 with 40% difference. After pretreatment with DHSMT, the expression levels of mRNA of many genes involved in various signaling pathway such as apoptosis, cell cycle, cell proliferation, response to oxidative stress, immune response, angiogenesis, and inflammatory cytokine were markedly inhibited in photothrombotic ischemia lesion compared to the control group. These results suggest that DHSMT prevent ischemic death of brain on photothrombotic ischemia model of mice through modulation of gene expression at the transcriptional level.