• Title/Summary/Keyword: Photosynthetic Activities

Search Result 134, Processing Time 0.03 seconds

Characterization of Photosynthetic Rates by Tomato Leaf Position (토마토 엽위별 광합성 특성 분석)

  • Kim, Sung Eun;Lee, Moon Young;Kim, Young Shik
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.146-152
    • /
    • 2013
  • The photosynthetic rates according to leaf positions in tomato plants were investigated in relation to leaf age and flowering rate. In the experiment investigating the diurnal change of photosynthetic rates, three leaves below the 4th cluster was checked every hour from 2 hours before sunrise and 3 hours after sunset. It was checked twice with the replication of 3 plants. The photosynthetic rate increased sharply for 1 hour right after sunrise and remained steady until 2 hours before sunset. This trend can be applied to determine the irrigation schedule. In the experiment investigating the photosynthetic rates according to leaf positions, it three leaves below each clusters from 1st to 4th cluster were checked. Flowering rate was also investigated. The photosynthetic rates showed a decreasing tendency steadily after flowers bloomed fully, regardless of the leaf position. It seems to be because the leaves below the cluster with fully-bloom flowers lost their activities. This result suggests the flowering rate or the position of flower has deep relation with the photosynthetic rates of the concerned leaves. From the results the leaves under flowering cluster may be the good part to investigate the photosynthetic rate to evaluate the crop's activity, even the photosynthetic rates are different according to the position of clusters.

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Cucumber Primary Leaves

  • Kim, Hyo-Jin;Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1093-1101
    • /
    • 2006
  • In the present study we studied the growth, photosynthetic traits and protective mechanisms against oxidative stress in the primary loaves of cucumber (Cucumis sativus L.) seedlings with or without UV-B treatment. Cucumber seedings were irradiated with UV-B for 10 days in environment-controlled growth chambers. The primary leaves irradiated with UV-B showed reduction in leaf length and decreased biomass production. The reduced biomass production seemed to be due to a negative effect of UV-B radiation on the photosynthetic process. Changes in chemical properties of leaf, such as chi a/b ratio affected photosynthesis. UV-B significantly affected chl b content compared with chi a in the light harvesting complex resulting reduced photosynthetic activity Fv/Fm decreased with an UV-B stress, suggesting that the photosynthetic apparatus, and particularly, PS II was damaged under UV-B stress. Malondialdehyde(MDA) concentration which represents the state of membrane lipid peroxidation Increased significantly under UV-B stress confirming an oxidative stress. UV-B exposure with SA solution(0.1-1.0 mM) can partially ameliorated some of the detrimental effects of UV-B stress. Leaf injuries including loss of chlorophyll and decreased ratio of Fv/Fm were reduced with combined application of UV-B and SA. ABA and JA showed similar mode of action in physiological effects on photosynthetic activities though the levels were lower than those from SA treated plants. Chloroplast ultrastructure was also affected by UV-B exposure. The thickness of leaf tissue components decreased and the number of grana and thylakoids was reduced in chloroplast applied UV-B or SA alone. At combined stress granal and stromal thylakoids were less affected. The leaves under combined stress acquired a significant tolerance to oxidative stress. From these results, it can be suggested that SA may have involved a protective role against UV-B induced oxidative damage.

Effects of Dimethipin on the Photosynthetic Electron Transport Activity of Isolated Barley Chloroplasts (보리 유식물 분리엽록체의 광합성 전자전달활성에 미치는 Dimethipin의 영향)

  • Lee Joon Sang
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.1
    • /
    • pp.52-56
    • /
    • 2005
  • Eight days grown barley seedlings were treated with dimethipin for 72 hours and then the content of chlorophyll and photosynthetic electron activities of isolated chloroplasts were investigated. At the treatment of 10/sup -5/ M dimethipin the content of chlorophyll was decreased to 33% at 72 hours. Seven days etiolated barley seedlings were exposed to the light while dimethipin was added. At the time of 48 hours' greening chlorophyll content was reduced to 43% at 10/sup -4/M dimethipin and the chlorophyll a/b ratio was increased. In photosynthetic electron transport the activity of PSⅡ+PSⅠ was decreased to 10% at 48 hours and 25% at 72 hours at 10/sup -4/ M dimethipin. In the treatment of 10/sup -4/ M dimethipin the activity of PSⅡ+PSⅠ, except water splitting system was inhibited to 16% at 48 hours and 27% at 72 hours. The activity of PSⅡ was inhibited to 8% at 24 hours, 13% at 48 hours and 18% at 72 hours at 10/sup -4/ M dimethipin. The activity of PSⅠ was inhibited to 4% at 24 hours, 8% at 48 hours and 10% at 72 hours at 10/sup -4/ M dimethipin. In the times of greening of 7 days etiolated barley seedlings the activities of PSⅡ+PSⅠ were reduced to 5, 10, 10 and 11 % at 6, 12, 24, and 48 hours, respectively, at 10/sup -4/ M dimethipin. On the other hand, the activity of PSⅡ+PSⅠ except water splitting system, was not inhibited at all incubated hours in 10/sup -4/M dimethipin and there were no clear changes of the activities of PSⅡ and PSⅠ as compared to the control. Therefore, it could be concluded that dimethipin inhibited the photosynthetic electron activity by affecting the function of chloroplast rather than the synthesis of chloroplast and the inhibited function of chloroplast seems to come from the severe decrease of chlorophyll content.

Analysis of Catalases from Photosynthetic Bacterium Rhodospirillum rubrum Sl

  • Lim, Hee-Kyung;Kim, Young-Mi;Lee, Dong-Heon;Kahng, Hyung-Yeel;Oh, Duck-Chul
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.168-176
    • /
    • 2001
  • Five different types of catalases from photosynthetic bacterium Rhodospirillum rubrum S1 grown aerobically in the dark were found in this study, and designated Catl (350 kDa), Cat2 (323 kDa), Cat3 (266 kDa), Cat4 (246 kDa), and Cat5 (238 kDa). Analysis of native PAGE revealed that Cat2, Cat3, and Cat4 were also produced in the cells anaerobically grown in the light. It is notable that only Cat2 was expressed much more strongly in response to the anaerobic condition. Enzyme activity staining demonstrated that Cat3 and Cat4 had bifunctional catalase-peroxidase activities, while Catl, Cat2, and Cat5 were typical monofunctional catalases. S1 cells grown aerobically in the presence of malate as the sole source of carbon exhibited an apparent catalase Km value of 10 mM and a Vmax of about 705 U/mg protein at late stationary growth phase. The catalase activity of Sl cells grown in the anaerobic environment exhibited a much lower Vmax of about 109 U/mg protein at late logarithmic growth phase. The catalytic activity was stable in the broad range of temperatures (30$\^{C}$-60$\^{C}$), and pH (6.0-10.0). R. rubrum S1 was much more resistant to H$_2$O$_2$in the stationary growth phase than in the exponential growth phase regardless of growth conditions. Cells of stationary growth phase treated with 15 mM H$_2$O$_2$for 1 h showed 3-fold higher catalase activities than the untreated cells. In addition, L-glutamate induced an 80-fold increase in total catalase activity of R. rubrum S1 compared with magic acid. Through fraction analyses of S1 cells, Cat2, Cat3, Cat4 and Cat5 were found in both cytoplasm and periplasm, while Catl was localized only in the cytoplasm.

  • PDF

Effects of Hexaconazole on Growth and Antioxidant Potential of Cucumber Seedlings under UV-B Radiation

  • Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1435-1447
    • /
    • 2012
  • The present study was conducted to determine the effect of hexaconazole (HEX), a triazole fungicide, on the growth, yield, photosynthetic response and antioxidant potential in cucumber (Cucumis sativus L.) plants subjected to UV-B stress. UV-B radiation and HEX were applied separately or in combination to cucumber seedlings. The growth parameters were significantly reduced under UV-B treatment, however, this growth inhibition was less in HEX treated plants. HEX caused noticeable changes in plant morphology such as reduced shoot length and leaf area, and increased leaf thickness. HEX was quite persistent in inhibiting shoot growth by causing a reduction in shoot fresh and dry weight. HEX noticeably recovered the UV-B induced inhibition of biomass production. Significant accumutation in anthocyanin and flavonoid pigments in the leaves occurred as a result of HEX or UV-B treatments. HEX permitted the survival of more green leaf tissue preventing chlorophyll content reduction and higher quantum yield for photosystemII under UV-B exposure. HEX treatment induced a transient rise in ABA levels in the leaves, and combined application of HEX and UV-B showed a significant enhancement of ABA content which activates $H_2O_2$ generation. UV-B exposure induced accumulation of $H_2O_2$ in the leaves, while HEX prevented UV-B induced increase in $H_2O_2$, indicating that HEX serves as an antioxidant agent able to scavenge $H_2O$ to protect cells from oxidative damage. An increase in the ascorbic acid was observed in the HEX treated cucumber leaves affecting many enzyme activities by removing $H_2O_2$ during photosynthetic processes. The activities of antioxidant enzymes including catalase(CAT), ascorbate peroxidase(APX), superoxide dismutase(SOD) and peroxidase(POD) in the leaves in the presence of HEX under UV-B stress were higher than those under UV-B stress alone. These findings suggest that HEX may participate in the enhanced tolerance to oxidative stress. From these results it can be concluded that HEX moderately ameliolate the effect of UV-B stress in cucumber by improving the components of antioxidant defense system.

Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress

  • Kim, So Wun;Gupta, Ravi;Min, Cheol Woo;Lee, Seo Hyun;Cheon, Ye Eun;Meng, Qing Feng;Jang, Jeong Woo;Hong, Chi Eun;Lee, Ji Yoon;Jo, Ick Hyun;Kim, Sun Tae
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.143-153
    • /
    • 2019
  • Background: Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above $25^{\circ}C$. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level. Methods: We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress. Results: The results showed a reduction in photosynthetic efficiency on heat treatment ($35^{\circ}C$) starting at 48 h. Label-free quantitative proteome analysis led to the identification of 3,332 proteins, of which 847 were differentially modulated in response to heat stress. The MapMan analysis showed that the proteins with increased abundance were mainly associated with antioxidant and translation-regulating activities, whereas the proteins related to the receptor and structural-binding activities exhibited decreased abundance. Several other proteins including chaperones, G-proteins, calcium-signaling proteins, transcription factors, and transfer/carrier proteins were specifically downregulated. Conclusion: These results increase our understanding of heat stress responses in the leaves of ginseng at the protein level, for the first time providing a resource for the scientific community.

Cadmium removal by Anabaena doliolum Ind1 isolated from a coal mining area in Meghalaya, India: associated structural and physiological alterations

  • Goswami, Smita;Syiem, Mayashree B.;Pakshirajan, Kannan
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.41-50
    • /
    • 2015
  • The cyanobacterium Anabaena doliolum Ind1 isolated from a coal mining site was tested for removal of cadmium at optimum pH 7.0 and temperature $25^{\circ}C$. The organism recorded high percentage of metal removal (92-69%) within seven days of exposure to 0.5-2.0 ppm cadmium. Biosorption onto the cell surface was the primary mode of metal removal. Fourier transform infrared spectroscopy (FTIR) established hydroxyl, amides, carboxyl, sulphate and carbonyl groups to be the major functional groups on the cell surface involved in cadmium binding. Cellular ultrastructure and a range of vital physiological processes (i.e., photosynthetic pigments, respiration, photosynthesis, heterocyst frequency and nitrogenase activity) remained unaffected upon 0.5 ppm treatment; higher concentrations of cadmium exerted visible adverse effects. Amongst the five photosynthetic pigments tested, phycocyanin was the most targeted pigment (inhibition was 15-89%). Both respiration and photosynthetic activities were inhibited by cadmium with more severe effect seen on respiration. 2.0 ppm cadmium exposure also had drastic negative effect on nitrogenase activity (87% decreased).

Photosynthesis-Irradiance Relationship and Primary Production of Phytoplankton in Lake Gocheonam

  • Jung, Min-Kyung;Lee, Ok-Hee;Cho, Kyung-Je
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.524-531
    • /
    • 2004
  • Photosynthetic activities and primary production of phytoplankton were investigated in Lake Gocheonam from October 1999 to August 2000. As an estuary lake with a barrage in the Southwestern coast of the Korean peninsula, the lake has received more attention after it became known as the habitat of large population of rare and endangered bird- Baikal Teal. As the lake had high algal biomass ranging from $20\mu{g}\;chl-aL^{-1}\;to\;125\mu{g}\;chl-aL^{-1}$ in average values and rich eutrophication indicator species, the freshwaters were in a very productive or hypertrophic state. In the results obtained from the phytoplankton incubation in the laboratory, the maximum photosynthetic rate $(P_{max})$ varied according to seasons and sampling stations. Photo- synthetic activities were higher during the warm season than the cold seasons and the serial order of $P_{max}$ was August dominated with Microcystis, April with Chlamydomonas and Nitzschia, October with Chlamydomonas and January with Stephanodiscus. The water of the lake was persistently turbid throughout the year due to strong winds from the adjacent sea. Despite the water turbidity, the phytoplankton productions estimated from a mathematical model had very broad range from 18mg C $m^{-2}day^{-1}\;to\;10,300mg\;C\;m^{-2}day^{-1}$.

Alleviating Effects of Nitric Oxide on Cadmium Toxicity in White Poplar (Populus alba)

  • Semsettin Kulac;Yakup Cikili;Halil Samet;Ertugrul Filiz
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Cadmium (Cd) is non-essential heavy metal that negatively affects plant metabolism. Nitric oxide (NO) is an increasingly important molecule for plant metabolism that makes signaling. In this study, it was aimed to investigate the alleviating effect of sodium nitroprusside (SNP) application as NO donor in white poplar (Populus alba) under Cd stress conditions. SNP and without SNP treatments increased the Cd accumulation in root tissue. While photosynthetic pigments (Chl a, Chl b, Chl a+b, and carotenoid) content decreased by only Cd application, SNP+Cd application decreased the rate of photosynthetic pigments reduction. When the results of Cd and Cd+SNP applications were evaluated for mineral (Fe, Zn, Mn and Cu) uptake, it was found that the positive effect of SNP was heterogeneously affected. Depending on SNP application, it was found that malondialdehyde (MDA) amount decreased in leaf in 100 µM Cd applications while hydrogen peroxide (H2O2) amount decreased in 100 and 500 µM Cd applications. When antioxidant enzyme activities were examined, it was found that catalase (CAT) and ascorbate peroxidase (APX) enzyme activities increased with 100 µM SNP applications under all Cd applications. As a result, it was found that SNP application under Cd stress generally supports physiological processes positively in white poplar, suggesting that NO molecule plays important alleviating roles in plant metabolism.

Characterization of the purple nonsulfur bacterium, rhodopseudomonas palustris strain P-1, degrading ferulate

  • Hee, Hong-Duck;Kim, Kyung-Hwan;Lee, Jai-Youl
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 1992
  • Photosynthetic bacteria which can utilize ferulate as a sole carbon source for their metabolic activities were isolated from soils by liquid enrichment culture technique. The strain P-1 was selected by the highest capability of degrading ferulate in aerobic and anaerobic conditions. The strain P-1 was rod-shaped with its motility, strained gram negatively and could not utilize sulfur compounds. This strain has the bacteriochlorophyll a group I carotenoid and membrane structures like lamellae. As the results of physiological, morphological and cultural charactderistics, the isolate was identified as Rhodopseudomonas plaustris, one of the purple nonsulfer bacteria. The strain P-1 utilized 2mM/day in aerobic condition and 0.86 mM/day in anaerobic condition.

  • PDF