• Title/Summary/Keyword: Photostimulable phosphor radiography

Search Result 8, Processing Time 0.026 seconds

Detection of root perforations using conventional and digital intraoral radiography, multidetector computed tomography and cone beam computed tomography

  • Shokri, Abbas;Eskandarloo, Amir;Noruzi-Gangachin, Maruf;Khajeh, Samira
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.58-67
    • /
    • 2015
  • Objectives: This study aimed to compare the accuracy of conventional intraoral (CI) radiography, photostimulable phosphor (PSP) radiography, cone beam computed tomography (CBCT) and multidetector computed tomography (MDCT) for detection of strip and root perforations in endodontically treated teeth. Materials and Methods: Mesial and distal roots of 72 recently extracted molar were endodontically prepared. Perforations were created in 0.2, 0.3, or 0.4 mm diameter around the furcation of 48 roots (strip perforation) and at the external surface of 48 roots (root perforation); 48 roots were not perforated (control group). After root obturation, intraoral radiography, CBCT and MDCT were taken. Discontinuity in the root structure was interpreted as perforation. Two observers examined the images. Data were analyzed using Stata software and Chi-square test. Results: The sensitivity and specificity of CI, PSP, CBCT and MDCT in detection of strip perforations were 81.25% and 93.75%, 85.42% and 91.67%, 97.92% and 85.42%, and 72.92% and 87.50%, respectively. For diagnosis of root perforation, the sensitivity and specificity were 87.50% and 93.75%, 89.58% and 91.67%, 97.92% and 85.42%, and 81.25% and 87.50%, respectively. For detection of strip perforation, the difference between CBCT and all other methods including CI, PSP and MDCT was significant (p < 0.05). For detection of root perforation, only the difference between CBCT and MDCT was significant, and for all the other methods no statistically significant difference was observed. Conclusions: If it is not possible to diagnose the root perforations by periapical radiographs, CBCT is the best radiographic technique while MDCT is not recommended.

The effects of noise reduction, sharpening, enhancement, and image magnification on diagnostic accuracy of a photostimulable phosphor system in the detection of non-cavitated approximal dental caries

  • Kajan, Zahra Dalili;Davalloo, Reza Tayefeh;Tavangar, Mayam;Valizade, Fatemeh
    • Imaging Science in Dentistry
    • /
    • v.45 no.2
    • /
    • pp.81-87
    • /
    • 2015
  • Purpose: Contrast, sharpness, enhancement, and density can be changed in digital systems. The important question is to what extent the changes in these variables affect the accuracy of caries detection. Materials and Methods: Forty eight extracted human posterior teeth with healthy or proximal caries surfaces were imaged using a photostimulable phosphor (PSP) sensor. All original images were processed using a six-step method: (1) applying "Sharpening 2" and "Noise Reduction" processing options to the original images; (2) applying the "Magnification 1:3" option to the image obtained in the first step; (3) enhancing the original images by using the "Diagonal/"option; (4) reviewing the changes brought about by the third step of image processing and then, applying "Magnification 1:3"; (5) applying "Sharpening UM" to the original images; and (6) analyzing the changes brought about by the fifth step of image processing, and finally, applying "Magnification 1:3." Three observers evaluated the images. The tooth sections were evaluated histologically as the gold standard. The diagnostic accuracy of the observers was compared using a chi-squared test. Results: The accuracy levels irrespective of the image processing method ranged from weak (18.8%) to intermediate (54.2%), but the highest accuracy was achieved at the sixth image processing step. The overall diagnostic accuracy level showed a statistically significant difference (p=0.0001). Conclusion: This study shows that the application of "Sharpening UM" along with the "Magnification 1:3" processing option improved the diagnostic accuracy and the observer agreement more effectively than the other processing procedures.

Effect of changing the kilovoltage peak on radiographic caries assessment in digital and conventional radiography

  • Zayet, Mohamed Khalifa;Helaly, Yara Rabee;Eiid, Salma Belal
    • Imaging Science in Dentistry
    • /
    • v.44 no.3
    • /
    • pp.199-205
    • /
    • 2014
  • Purpose: This study aimed to investigate the effect of changing the kilovoltage peak (kVp) on the radiographic assessment of dental caries. Materials and Methods: Seventy-five extracted posterior teeth with proximal caries or apparently sound proximal surfaces were radiographed with conventional E-speed films and a photostimulable phosphor system using 60 kVp and 70 kVp for the caries assessment. The images were evaluated by three oral radiologists and compared with the results of the stereomicroscope analysis. Results: No statistically significant difference was found between 60 kVp and 70 kVp for the caries detection, determination of caries extension into dentin, and caries severity in either the conventional or the digital images. Good to very good inter-observer and intra-observer agreements were found for both kilovoltage values on the conventional and digital images. Conclusion: Changing the kilovoltage between 60 kVp and 70 kVp had no obvious effect on the detection of proximal caries or determination of its extension or severity.

Accuracy of various imaging methods for detecting misfit at the tooth-restoration interface in posterior teeth

  • Francio, Luciano Andrei;Silva, Fernanda Evangelista;Valerio, Claudia Scigliano;Cardoso, Claudia Assuncao e Alves;Jansen, Wellington Correa;Manzi, Flavio Ricardo
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • Purpose: The present study aimed to evaluate which of the following imaging methods best assessed misfit at the tooth-restoration interface: (1) bitewing radiographs, both conventional and digital, performed using a photostimulable phosphor plate (PSP) and a charge-coupled device (CCD) system; (2) panoramic radiographs, both conventional and digital; and (3) cone-beam computed tomography (CBCT). Materials and Methods: Forty healthy human molars with class I cavities were selected and divided into 4 groups according to the restoration that was applied: composite resin, composite resin with liner material to simulate misfit, dental amalgam, and dental amalgam with liner material to simulate misfit. Radiography and tomography were performed using the various imaging methods, and the resulting images were analyzed by 2 calibrated radiologists. The true presence or absence of misfit corresponding to an area of radiolucency in regions subjacent to the esthetic and metal restorations was validated with microscopy. The data were analyzed using a receiver operating characteristic (ROC) curve, and the scores were compared using the Cohen kappa coefficient. Results: For bitewing images, the digital systems (CCD and PSP) showed a higher area under the ROC curve (AUROC) for the evaluation of resin restorations, while the conventional images exhibited a larger AUROC for the evaluation of amalgam restorations. Conventional and digital panoramic radiographs did not yield good results for the evaluation of resin and amalgam restorations (P<.05). CBCT images exhibited good results for resin restorations(P>.05), but showed no discriminatory ability for amalgam restorations(P<.05). Conclusion: Bitewing radiographs (conventional or digital) should be the method of choice when assessing dental restoration misfit.

The influence of different scan resolutions on the detection of proximal caries lesions

  • Ferreira, Liana Matos;Queiroz, Polyane Mazucatto;Santaella, Gustavo Machado;Wenzel, Ann;Groppo, Francisco Carlos;Haiter-Neto, Francisco
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.97-102
    • /
    • 2019
  • Purpose: This study was conducted to evaluate the effect of different spatial resolutions of a photostimulable phosphor plate (PSP) radiography system on the detection of proximal caries lesions. Materials and Methods: Forty-five extracted human permanent teeth were radiographed using a PSP system (VistaScan Perio Plus) and scanned at the 4 resolutions (10 lp/mm, 20 lp/mm, 25 lp/mm, and 40 lp/mm) available in the system. Three independent examiners scored the images for the presence and absence of proximal caries lesions using a 5-point scale. The presence or absence of caries was confirmed by histological sections of the examined teeth (defined as the gold standard). Intra- and inter-observer reproducibility was calculated by the weighted kappa test. One-way analysis of variance with the post hoc Tukey test was used to compare the area under the receiver operating characteristic curve for the classifications made with each resolution. Results: For the detection of enamel lesions, the spatial resolution of 10 lp/mm was significantly superior to the other resolutions. However, the spatial resolution did not affect the detection of caries lesions in dentin (P>0.05). Conclusion: Spatial resolution may influence the accuracy of the detection of incipient caries lesions in radiographs with PSP plates. Images with low spatial resolution seem to be more appropriate for this purpose.

The use of digital periapical radiographs to study the prevalence of alveolar domes

  • Xambre, Pedro Augusto Oliveira Santos;Valerio, Claudia Scigliano;Cardoso, Claudia Assuncao e Alves;Custodio, Antonio Luis Neto;Manzi, Flavio Ricardo
    • Imaging Science in Dentistry
    • /
    • v.46 no.3
    • /
    • pp.179-184
    • /
    • 2016
  • Purpose: In the present study, we coined the term 'alveolar dome' and aimed to demonstrate the prevalence of alveolar domes through digital periapical radiographs. Materials and Methods: This study examined 800 digital periapical radiographs in regard to the presence of alveolar domes. The periapical radiographs were acquired by a digital system using a photostimulable phosphor (PSP) plate. The ${\chi}^2$ test, with a significance level of 5%, was used to compare the prevalence of alveolar domes in the maxillary posterior teeth and, considering the same teeth, to verify the difference in the prevalence of dome-shaped phenomena between the roots. Results: The prevalence of alveolar domes present in the first pre-molars was statistically lower as compared to the other maxillary posterior teeth (p<0.05). No statistically significant difference was observed in the prevalence of alveolar domes between the maxillary first and second molars. Considering the maxillary first and second molars, it was observed that the palatal root presented a lower prevalence of alveolar domes when compared to the distobuccal and mesiobuccal roots (p<0.05). Conclusion: The present study coined the term 'alveolar dome', referring to the anatomical projection of the root into the floor of the maxillary sinus. The maxillary first and second molars presented a greater prevalence of alveolar domes, especially in the buccal roots, followed by the third molars and second pre-molars. Although the periapical radiograph is a two-dimensional method, it can provide dentists with the auxiliary information necessary to identify alveolar domes, thus improving diagnosis, planning, and treatment.

Clinical comparison of intraoral CMOS and PSP detectors in terms of time efficiency, patient comfort, and subjective image quality

  • Kamburoglu, Kivanc;Samunahmetoglu, Ercin;Eratam, Nejlan;Sonmez, Gul;Karahan, Sevilay
    • Imaging Science in Dentistry
    • /
    • v.52 no.1
    • /
    • pp.93-101
    • /
    • 2022
  • Purpose: This study compared the effectiveness of complementary metal-oxide semiconductors (CMOS) and photostimulable phosphor (PSP) plates as intraoral imaging systems in terms of time efficacy, patient comfort, and subjective image quality assessment in real clinical settings. Materials and Methods: Fifty-eight patients (25 women and 33 men) were included. Patients were referred for a full-mouth radiological examination including 1 bitewing radiograph (left and right) and 8 periapical radiographs for each side (left maxilla/mandible and right maxilla/mandible). For each patient, 1 side of the dental arch was radiographed using a CMOS detector, whereas the other side was radiographed using a PSP detector, ensuring an equal number of left and right arches imaged by each detector. Clinical application time, comfort/pain, and subjective image quality were assessed for each detector. Continuous variables were summarized as mean±standard deviation. Differences between detectors were evaluated using repeated-measures analysis of variance. P<0.05 was accepted as significant. Results: The mean total time required for all imaging procedures with the CMOS detector was significantly lower than the mean total time required for imaging procedures with PSP (P<0.05). The overall mean patient comfort scores for the CMOS and PSP detectors were 4.57 and 4.48, respectively, without a statistically significant difference (P>0.05). The performance of both observers in subjectively assessing structures was significantly higher when using CMOS images than when using PSP images for all regions (P<0.05). Conclusion: The CMOS detector was found to be superior to the PSP detector in terms of clinical time efficacy and subjective image quality.

Radiopacity of contemporary luting cements using conventional and digital radiography

  • An, Seo-Young;An, Chang-Hyeon;Choi, Karp-Sik;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.97-101
    • /
    • 2018
  • Purpose: This study evaluated the radiopacity of contemporary luting cements using conventional and digital radiography. Materials and Methods: Disc specimens (N=24, n=6 per group, ø$7mm{\times}1mm$) were prepared using 4 resin-based luting cements (Duolink, Multilink N, Panavia F 2.0, and U-cem). The specimens were radiographed using films, a complementary metal oxide semiconductor (CMOS) sensor, and a photostimulable phosphor plate (PSP) with a 10-step aluminum step wedge (1 mm incremental steps) and a 1-mm-thick tooth cut. The settings were 70 kVp, 4 mA, and 30 cm, with an exposure time of 0.2 s for the films and 0.1 s for the CMOS sensor and PSP. The films were scanned using a scanner. The radiopacity of the luting cements and tooth was measured using a densitometer for the film and NIH ImageJ software for the images obtained from the CMOS sensor, PSP, and scanned films. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U tests. Results: Multilink (3.44-4.33) showed the highest radiopacity, followed by U-cem (1.81-2.88), Panavia F 2.0 (1.51-2.69), and Duolink (1.48-2.59). The $R^2$ values of the optical density of the aluminum step wedge were 0.9923 for the films, 0.9989 for the PSP, 0.9986 for the scanned films, and 0.9266 for the CMOS sensor in the linear regression models. Conclusion: The radiopacities of the luting materials were greater than those of aluminum or dentin at the same thickness. PSP is recommended as a detector for radiopacity measurements because of its accuracy and convenience.