• Title/Summary/Keyword: Photoresist stripping

Search Result 20, Processing Time 0.042 seconds

Efficient Stripping of High-dose Ion-implanted Photoresist in Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 고농도이온주입 포토레지스트의 효율적인 제거)

  • Kim, Do-Hoon;Lim, Eu-Sang;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.300-305
    • /
    • 2011
  • A mixture of supercritical carbon dioxide and a co-solvent was employed to strip a high-dose ion-implanted photoresist (HDIPR) from the surface of semiconductor wafers. The stripping efficiency was highly improved by the physical force generated from a ultrasonication tip inside the reactor. In addition, helium gas was injected in the reactor as a barrier gas before the introduction of pure supercritical $CO_2$ ($scCO_2$), which reduced the rinsing time significantly. The effect of co-solvents on the stripping efficiency was investigated. The wafer surfaces were analyzed by scanning electron microscopy and by an energy dispersive X-ray spectrometer.

Numerical Investigation of Factors affecting Photoresist Stripping Process on the ITO Surface using the Spray Method (노즐 분사 방식의 ITO 표면 포토레지스트 박리과정 요인의 수치해석)

  • Kim, Joon Hyun;Lee, Joon Hyuck;Kang, Tae Seong;Joo, Gi-Tae;Kim, Young Sung;Jeong, Byung Hyun;Lee, Dae Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.158-165
    • /
    • 2017
  • This study investigated spraying factors applicable to stripper usage. Cyclodextrine, as environment-friendly material, was included in the stripper composition. An efficient spray technology was applied for the Photoresist strip. For industrial applications, stripping requires a temperature below $50^{\circ}C$, a strip time within 50 s, and chemically stable activation. Spraying factors were organized considering many conditions-orifice diameter, working pressure (inlet speed), spray distance, and spray angle. For commercial practicability, the flow rate was limited to 3 L/min. The nozzle parameters were nozzle orifice diameter of 1.8-2.2 mm, spray distance of 40-60 mm, and injection speed of 0.7-1.2 m/s. Through the thermal spray movement of the fluid, the thermal boundary layer for a chemical reaction just above the ITO-glass surface and momentum region for sufficient agitation (above 4 m/s) was achieved.

Stripping of Ion-Implanted Photoresist Using Cosolvent-Modified Supercritical Carbon Dioxide (공용매로 변형된 초임계 이산화탄소를 이용한 이온 주입 포토레지스트 세정)

  • Jung, In-Il;Kim, Ju-Won;Lee, Sang-Yun;Kim, Woo-Sik;Ryu, Jong-Hoon;Lim, Gio-Bin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.27-32
    • /
    • 2005
  • We propose an effective and environmentally friendly dry stripping method using a supercritical carbon dioxide ($SCCO_2$) system modified by a single and multiple cosolvents to remove ion-implanted photoresist and residue from a wafer surface at three different temperatures (97, 148, $200^{\circ}C$) and pressures (200, 300, 400 bar). After high dose of ion implantation the photoresist was not easily removed by using pure $SCCO_2$, but swollen. The $SCCO_2$ system modified by single cosolvents and multiple cosolvents mixed with aprotic solvents could not effectively remove the heavy organics, but swell them. However, the $SCCO_2$ system modified with multiple cosolvent (5%, v/v) composed of DMSO and DIW showed high removal efficiency for ion-implanted photoresists at $97^{\circ}C$ and 200 bar for 30 min (about 80%). In this study it has been shown that the dry stripping method using $SCCO_2$ system modified with multiple cosolvents could replace either plasma ashing or acid and solvent wet bench method and dramatically reduce accompanied chemical usage and disposal.

Surface Preparation of III-V Semiconductors

  • Im, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.1-86.1
    • /
    • 2015
  • As the feature size of Si-based semiconductor shrinks to nanometer scale, we are facing to the problems such as short channel effect and leakage current. One of the solutions to cope with those issues is to bring III-V compound semiconductors to the semiconductor structures, because III-V compound semiconductors have much higher carrier mobility than Si. However, introduction of III-V semiconductors to the current Si-based manufacturing process requires great challenge in the development of process integration, since they exhibit totally different physical and chemical properties from Si. For example, epitaxial growth, surface preparation and wet etching of III-V semiconductors have to be optimized for production. In addition, oxidation mechanisms of III-V semiconductors should be elucidated and re-growth of native oxide should be controlled. In this study, surface preparation methods of various III-V compound semiconductors such as GaAs, InAs, and GaSb are introduced in terms of i) how their surfaces are modified after different chemical treatments, ii) how they will be re-oxidized after chemical treatments, and iii) is there any effect of surface orientation on the surface preparation and re-growth of oxide. Surface termination and behaviors on those semiconductors were observed by MIR-FTIR, XPS, ellipsometer, and contact angle measurements. In addition, photoresist stripping process on III-V semiconductor is also studied, because there is a chance that a conventional photoresist stripping process can attack III-V semiconductor surfaces. Based on the Hansen theory various organic solvents such as 1-methyl-2-pyrrolydone, dimethyl sulfoxide, benzyl alcohol, and propylene carbonate, were selected to remove photoresists with and without ion implantation. Although SPM and DIO3 caused etching and/or surface roughening of III-V semiconductor surface, organic solvents could remove I-line photoresist without attack of III-V semiconductor surface. The behavior of photoresist removal depends on the solvent temperature and ion implantation dose.

  • PDF

Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer Using Supercritical CO2 Mixtures with Co-solvents and Surfactants: the Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer

  • You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2017
  • The supercritical $CO_2$ (sc-$CO_2$) mixture and the sc-$CO_2$-based Photoresist(PR) stripping(SCPS) process were applied to the removal of the post etch/ash PR residue on aluminum patterned wafers and the results were observed by scanning of electron microscope(SEM). In the case of MDII wafers, the carbonized PR was able to be effectively removed without pre-stripping by oxygen plasma ashing by using sc-$CO_2$ mixture containing the optimum formulated additives at the proper pressure and temperature, and the same result was also able to be obtained in the case of HDII wafer. It was found that the efficiency of SCPS of ion implanted wafer improved as the temperature of SCPS was high, so a very large amount of MEA in the sc-$CO_2$ mixture could be reduced if the temperature could be increased at condition that a process permits, and the ion implanted photoresist(IIP) on the wafer was able to be removed completely without pre-treatment of plasma ashing by using the only 1 step SCPS process. By using SCPS process, PR polymers formed on sidewalls of metal conductive layers such as aluminum films, titanium and titanium nitride films by dry etching and ashing processes were removed effectively with the minimization of the corrosion of the metal conductive layers.

  • PDF

A Study on Photoresist Stripping and Damage Using Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 감광제 제거 공정과 damage에 관한 연구)

  • Hwang, In-Uk;Yang, Seung-Kook;Song, Ho-Young;Park, Se-Geun;O, Beom-Hoan;Lee, Seung-Gol;Lee, El-Hang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.152-155
    • /
    • 2003
  • Ashing of photoresist was investigated in dielectric barrier discharges in atmospheric pressure by changing applied voltage, frequency, flow rate. we analyzed the plasma by Optical Emission Spectroscopy(OES) to monitor the variation of active oxygen species. Another new peaks of oxygen radical is observed by addition of argon gas. This may explain the increase in ashing rate with argon addition. With the results of Optical Emission Spectroscopy(OES), we can find the optimized ashing conditions. MIS capacitor for monitoring charging damage by the plasma was also studied. The results suggest the dielectric barrier discharges(DBD) can be an efficient, alternative Plasma source for general surface processing.

  • PDF

A Study on Recycling Technology of EC for Semiconductor and LCD PR Stripping Process (반도체/LCD PR 제거용 EC의 재이용 기술에 관한 연구)

  • Moon, Se-Ho;Chai, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.25-30
    • /
    • 2009
  • We have developed recycling technology of ethylen carbonate to use in photoresist stripping and cleaning process, which will be core processing technology for high performance and low price semiconductor and LCD fabrication. Using this technology, it is possible for semiconductor wafer and LCD planer to process more rapid and chip, and productivity will be improved.

Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer Using Supercritical CO2 Mixtures with Co-solvents and Surfactants: sc-CO2 Mixture for the Removal of Post Etch/Ash Residue

  • You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • The result of stripping process for the removal of the post etch/ash Photoresist (PR) residue on an aluminum patterned wafer by using supercritical $CO_2$ ($sc-CO_2$) mixture, was investigated by scanning of electron microscope (SEM) inspection of wafer, measuring the cloud points and visual observation of the state of $sc-CO_2$ mixtures. It was found that $sc-CO_2$ mixtures were made by mixing additives and $sc-CO_2$ should form homogeneous and transparent phase (HTP) in order to effectively and uniformly remove the post etch/ash PR residue on the aluminum patterned wafer using them. The additives were formulated by mixing and co-solvents like an amine compound and fluorosurfactants used as HTP agents, and the PR residue on the wafer were able to be rapidly and effectively removed using the $sc-CO_2$ mixture of HTP. The five kinds of additives were formulated by the recipe of mixing co-solvents and surfactants, which were able to remove PR residue on the wafer by mixing with $sc-CO_2$ at the stripping temperature range from 40 to $80^{\circ}C$. The five kinds of $sc-CO_2$ mixtures which were named as PR removers were made, which were able to form HTP within the above described stripping temperature. The cloud points of $sc-CO_2$ mixtures were measured to find correlation between them and HTP.

  • PDF

Technical Trend on the Recycling Technologies for Stripping Process Waste Solution by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 스트리핑 공정폐액(工程廢液) 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Ho-Kyung;Lee, In-Gyoo;Park, Myung-Jun;Koo, Kee-Kahb;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.81-90
    • /
    • 2013
  • Since the 1990s, the rapid development of information and communication industry, the demand for semiconductor and LCD continues to increase. Therefore in the formation of fine circuit patterns, which are the cores of sensitizer and the most expensive thinner and stripper liquor used to remove photoresist and its dilution, the amount in demand are dramatically increasing, emerging need for recycling of waste thinner and stripper liquor. Recently, recycling technologies of stripping process waste solution has been widely studied by economic aspects and environmental aspects, in terms of efficiency of the stripping process. In this study, analyzed paper and patent for recycling technologies of waste solution from stripping process. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), Korea (KR) and SCI journals from 1981 to 2010. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies.

Role of a PVA layer During lithography of SnS2 thin Films Grown by Atomic layer Deposition

  • Ham, Giyul;Shin, Seokyoon;Lee, Juhyun;Lee, Namgue;Jeon, Hyeongtag
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.41-45
    • /
    • 2018
  • Two-dimensional (2D) materials have been studied extensively due to their excellent physical, chemical, and electrical properties. Among them, we report the material and device characteristics of tin disulfide ($SnS_2$). To apply $SnS_2$ as a channel layer in a transistor, $SnS_2$ channels were formed by a stripping method and a transfer method. The limitation of this method is that it is difficult to produce uniform device characteristics over a large area. Therefore, we directly deposited $SnS_2$ by atomic layer deposition (ALD) and then performed lithography. This method was able to produce devices with repeatable characteristics over a large area. However, the $SnS_2$ film was damaged by the acetone used as a photoresist (PR) developer during the lithography process, with the electrical properties of mobility of $2.6{\times}10^{-4}cm^2/Vs$, S.S. of 58.1 V/decade, and on/off current ratio of $1.8{\times}10^2$. These results are not suitable for advanced electronic devices. In this study, we analyzed the effect of acetone on $SnS_2$ and studied the device process to prevent such damage. Using polyvinyl alcohol (PVA) as a passivation layer during the lithography process, the electrical characteristics of the $SnS_2$ transistor had $2.11{\times}10^{-3}cm^2/Vs$ of mobility, 11.3 V/decade of S.S, and $2.5{\times}10^3$ of the on/off current ratio, which were 10x improvements to the $SnS_2$ transistor fabricated by the conventional method.