• Title/Summary/Keyword: Photoreactor

Search Result 29, Processing Time 0.038 seconds

A Study of Hydrocarbon Reduction with Photocatalysts (광촉매를 이용한 탄화수소 저감 연구)

  • 손건석;고성혁;김대중;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.47-53
    • /
    • 2000
  • To overcome the shortage of conventional TWC that is activated at high temperature, higher than 25$0^{\circ}C$, photocatalyst is considered as an new technology. Because the photocatalytic reaction of photocatalyst is not a thermo mechanical reaction, it is necessary to heat the system to start the reaction. It can be activated just by ultra violet light that includes wavelengths shorter than 400 nanometers even at ambient temperature. In this study photocatalytic reduction of hydrocarbon was investigated with a model gas test. To understand the effects of co-existence gases on the hydrocarbon reduction by photoreaction, CO and NO, $O_2, H_2O$ gases those are components of exhaust gases of gasoline engine are supplied with C3H8/N2 to a photoreactor. The photoreactor contains $TiO_2$ photocatalyst powders and a UV bulb. The results show that oxygen is the most important factor to reduce HC emission with photocatalyst. Photocatalyst seems to have a good probability for automotive application to reduce cold start HC emissions.

  • PDF

A Comparative Study on Degradation of BTEX Vapor by O3/UV, TiO2/UV, and O3/TiO2/UV System with Operating Conditions (운전조건에 따른 O3/UV, TiO2/UV 및 O3/TiO2/UV 시스템의 BTEX 증기처리에 관한 비교 연구)

  • Kim, Kyoung-Jin;Park, Ok-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • A multilayer tower-type photoreactor, in which $TiO_2$-coated glass-tubes were installed, was used to measure the vapor-phase BTEX removal efficiencies by ozone oxidation ($O_3$/UV), photocatalytic oxidation ($TiO_2$/UV) and the combination of ozone and photocatalytic oxidation ($O_3/TiO_2$/UV) process, respectively. The experiments were conducted under various relative humidities, temperatures, ozone concentrations, gas flow rates and BTEX concentrations. As a result, the BTEX removal efficiency and the oxidation rate by $O_3/TiO_2$/UV system were highest, compared to $O_3$/UV and $TiO_2$/UV system. The $O_3/TiO_2$/UV system accelerated the low oxidation rate of low-concentration organic compounds and removed organic compounds to a large extent in a fixed volume of reactor in a short time. Therefore, $O_3/TiO_2$/UV system as a superimposed oxidation technology was developed to efficiently and economically treat refractory VOCs. Also, this study demonstrated feasibility of a technology to scale up a photoreactor from lab-scale to pilot-scale, which uses (i) a separated light-source chamber and a light distribution system, (ii) catalyst fixing to glass-tube media, and (iii) unit connection in series and/or parallel. The experimental results from $O_3/TiO_2$/UV system showed that (i) the highest BTEX removal efficiencies were obtained under relative humidity ranging from 50 to 55% and temperature ranging from 40 to $50^{\circ}C$, and (ii) the removal efficiencies linearly increased with ozone dosage and decreased with gas flow rate. When applying Langmuir-Hinshelwood model to $TiO_2$/UV and $O_3/TiO_2$/UV system, reaction rate constant for $O_3/TiO_2$/UV system was larger than that for $TiO_2$/UV system, however, it was found that adsorption constant for $O_3/TiO_2$/UV system was smaller than that for $TiO_2$/UV system due to competitive adsorption between organics and ozone.

TCE degradation by a photocatalysis in the annular flow & the annulus fluidized bed photoreactor (애뉼러 흐름 및 애뉼러스 유동층 광반응기에서 Trichloroethylene 의 광촉매 분해반응 특성)

  • 임탁형;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.161-164
    • /
    • 2002
  • 대기로 배출되는 휘발성 유기화합물 중의 하나인 TCE (Trichroloethylene)를 제거하는 기술들은 설치비 및 운전비가 많이 요구되는 흡착, 응축, 소각기술 들이 있으며, 이를 대체하는 신기술로 광촉매 반응으로 유기휘발물을 상온과 상압에서 광반응시켜 제거함으로서, 설치 및 조업비 측면에서 경제적인 이점이 있다.(중략)

  • PDF

Pbotocatalysis decomposition of TCE in water phase with recirculation photoreactor (Recirculation 광촉매 화학 반응기를 이용한 액상 TCE 분해)

  • 이태규;김동형;조덕기;조서현;오정무
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.33-41
    • /
    • 1993
  • The objectives of this experiment performed were to determine the potential using of solar radiation to destroy organic contaminants in water by photolysis and to develop the process and improve its performance. We used lab, scale of recirculation photoreactor with 30, 50, 80ppm initial concentration of TCE and Ti $O_2$ anatase, respectively. Adsorption constant, reaction constant were obtained and compared using the Langmuir-Hinshelwood kinetics equation. Ti $O_2$ anatase demonstrated the highest conversion ratio co TCE among Ti $O_2$ anatase, ZnO and F $e_2$ $O_3$ in this experiment. It was shown that in case of two component system, TCE+ phenol, as the concentration of phenol increased in the feed solution, TCE decomposition rate decreased.

  • PDF

Enhanced photocatalytic Cr(VI) reduction using immobilized nanotubular TiO2 on Ti substrates and flat type photoreactor (티타늄 금속지지체에 고정화된 나노튜브 광촉매와 평판형 광반응기를 이용한 Cr(VI) 환원처리 효율 향상 연구)

  • Kim, Youngji;Joo, Hyunku;Yoon, Jaekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • In this study, flat-type photocatalytic reaction system is applied to reduce toxic hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in aqueous solution under UV irradiation. To overcome the limitation of conventional photocatalysis, a novel approach toward photocatalytic system for reduction of hexavalent chromium including nanotubular $TiO_2$ (NTT) on two kinds of titanium substrates (foil and mesh) were established. In addition, modified Ti substrates were prepared by bending treatment to increase reaction efficiency of Cr(VI) in the flat-type photocatalytic reactor. For the fabrication of NTT on Ti substrates, Ti foil and mesh was anodized with mixed electrolytes ($NH_4F-H_2O-C_2H_6O_2$) and then annealed in ambient oxygen. The prepared NTT arrays were uniformly grown on two Ti substrates and surface property measurements were performed through SEM and XRD. Hydraulic retention time(HRT) and substrate type were significantly affected the Cr(VI) reduction. Hence, the photocatalytic Cr(VI) reduction was observed to be highest up to 95% at bended(modified) Ti mesh and lowest HRT. Especially, Ti mesh was more effective as NTT substrate in this research.

Evaluation of Hydroxyl radical Formation and Energy Distribution in Photolysis Reactor (광반응 반응기 내부의 에너지 분포와 라디칼 생성에 대한 연구)

  • Nam, Sang-Geon;Hwang, An-Na;Cho, Sang-Hyun;Lim, Myung-Hee;Kim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.179-183
    • /
    • 2011
  • In this study, photochemical effects (OH radical formation) in the photoreactor was investigated to analyze UV-C intensity distribution. In addition, The influence radius of the UV-C lamp was measured at various dose of $TiO_2$ (Degussa P-25). The photoreactor used in this study was bath type reactor which is made by acrylic and the UV-C lamp (SANKYO DENKI, wavelength : 254 nm, Diameter : 2.2 cm, Length : 18.5 cm) was used as photo source. The maximum electric power consumption of the UV lamp was 10.5 W. The OH radical formation by UV-C was measured by KI dosimetry methods. From the results, the effective OH radical formation was occurred under the following condition. The reasonable distance of UV-C lamp is within 13 cm and the intensity of UV-C lamp should be more than 0.367 mW/$cm^2$. Moreover, the concentration of catalyst affects on the influence radius of the UV lamp.

Heterogeneous Photocatalytic Bleaching of Methyl Orange (광화학반응을 이용한 메틸오렌지의 탈색)

  • Lee, Tai K.;Kim, Dong H.;Kim, Kyung N.;Chungmoo Auh
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.60-68
    • /
    • 1995
  • This work wes performed to investigate the photocatalytic decolorization of waste water from textile industries. Methyl orange was used as a target dye with suspended Hombikat TiO$_2$ photocatalyst with a recirculating annular photoreactor. 1 wt % Pt-doped Hombikat thin film tubular reactor with parabolic reflector also wes usedin this experiment. The pH effect and flow rate effect on photobleaching of 0.012 g/l methyl orange solution, AtpH=3 Colour of methyl orange was completely bleached in 30 min with a 20 W UV lamp.

  • PDF

Solar Detoxification of Trichloroethylene in Waste Water with Slurry Batchtype Photoreactor (Slurry batch형 광화학 반응기를 이용한 폐수 내의 Trichlroethylene의 분해)

  • Lee, Tai-K.;Kim, Dong-H.;Cho, Sug-H.;Auh, Chung-Moo
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.10-20
    • /
    • 1992
  • In this experiment, photochemical reaction has been applied to destroy TCE in water phase. The main target of this work is to investigate the technical feasibility of large scale of solar detoxification reactor for water treatment. The results have revealed that solar detoxification utilizing photon energy from the sun is the most attractive process to decompose organic toxins in water phase at room temperature. The detailed results from this work are as follows; (1) The highest conversion ratio of TCE was obtained by using $TiO_2$, annatase as a photocatalyst among $TiO_2$ anatase, $TiO_2$ rutile and $V_2O_5$ under the same experimental condition. The anatase crystal structure was confirmed with XRD analysis, and its surface area was 7.748 $m^2/g$ from the BET-$N_2$ measurement (2) 0.1 wt% of $TiO_2$ anatase has been adopted as optimal quantity for batch slurry reactor at this experimental conditions. (3) The effect of hydrogen peroxide on the conversion of TCE was investigated. Its optimal quantity was 0.06 vol. % under this experimental conditions. (4) The effect of oxygen on the conversion of TCE also was studied by controlling the head space in photoreactor. Results indicated that sufficient amount of oxygen should be supplied to accomplish the highest conversion rate of TCE in water phase.

  • PDF

A Study on the Removal of Ag(I) in Water Using $TiO_2$ Photocatalysis ($TiO_2$ 광촉매반응을 이용한 수중의 은이온 제거에 관한 연구)

  • 김현용;조일형;양원호;김민호;이홍근
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.58-64
    • /
    • 2000
  • The photocatalytic removal of Ag(I) in water by $TiO_2$ at a various conditions, which are initial Ag(I) concentration, circulation flow rate, $TiO_2$ dosage and methanol concentration, was studied. A continuous flow system with a circular type reactor of the TiO2 suspensions with UV light through an photoreactor column was applied. The major results of this study were as follows; 1. First order kinetics was observed from the result at different initial concentration of Ag(I). As the initial Ag(I) concentration was incereased, the reaction rate was decreased. 2. The removal efficiency of Ag(I) increased with increasing the circulation flow rate and $TiO_2$ dosage. However, over $4{\ell}/min$ of circulation flow rate and $1.5g/{\ell}$ of $TiO_2$ dosage, increasing of the efficiency reached a plateau. 3. The addition of methanol as hole scavenger enhanced the removal efficiency of Ag(I) but the removal efficiency reached a plateau over some level of methanol. 4. It was found that $TiO_2$ photocatalysis was effective method to remove of Ag(I) from aqueous solution.

  • PDF

Degradation of Dye Wastewater by Advanced Oxidation Process: A Comparative Study (고급산화공정에 의한 안료폐수 처리: 비교 연구)

  • Park Young-Seek
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.67-75
    • /
    • 2006
  • The degradation of Rhodamine B (RhB) in water was investigated in laboratory-scale experiments, using five advanced oxidation Processes (AOPs) $UV/H_2O_2$, lenten, photo-lenten, $UV/TiO_2,\;UV/TiO_2/H_2O_2$. The photodegradation experiments were carried out in a fluidized bed photoreactor equipped with an immersed 32 W UV-C lamp as light source. initial decolorization rate and COD removal efficiency were evaluated and compared. The results obtained showed that the initial decolorization rate constant was quite different for each oxidation process. The relative order of decolorization was: photo-fenton > $UV/TiO_2/H_2O_2$ > fenton > $UV/H_2O_2$ > $UV/TiO_2$ > UV > $H_2O_2$. The relative order of COD removal was different from decolorization: photo-fenten ${\fallingdotseq}$ $UV/TiO_2/H_2O_2\;>\;UV/TiO_2\;>\;fenton\;>\;UV/H_2O_2$. The Photo-lenten and $UV/TiO_2/H_2O_2$ processes seem to be appropriate for decolorization and COD removal of dye wastewater.