• Title/Summary/Keyword: Photon irradiance

Search Result 30, Processing Time 0.023 seconds

Effects of Temperature, Photon Irradiance, and Photoperiod on the Growth of Embryos of Sargassum horneri in Laboratory Culture (괭생이모자반(Sargassum horneri) 유배의 생장에 미치는 온도, 광량, 광주기의 영향)

  • Kim, Nam-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.76-81
    • /
    • 2015
  • The effects of temperature, photon irradiance, and photoperiod on the growth of Sargassum horneri embryos were examined for female plants collected at Chokpo in Tongyeoung, Gyeongnam Prefecture, Korea on 27 December 2011. Mature plant receptacles were detached, and fertilized eggs were cultured in the laboratory at temperatures of $5-25^{\circ}C$ with photon irradiances of $10-80{\mu}mol\;m^{-2}s^{-1}$ under 14L:10D and 10L:14D photoperiods. Germination and embryo growth were rapid at $20-25^{\circ}C$ and $40{\mu}mol\;m^{-2}s^{-1}$ under 14L:10D. The number of rhizoids in the germinated young thalli was high at high photon irradiances ($40-80{\mu}mol\;m^{-2}s^{-1}$) and $15-20^{\circ}C$. At $20^{\circ}C$ and 14L:10D, vigorous growth of main and lateral branches was observed; however, at $5^{\circ}C$ under both photoperiods, plant growth decreased markedly. In the present study, S. horneri grew well at high temperatures ($20-25^{\circ}C$) and high photon irradiances ($40-80{\mu}mol\;m^{-2}s^{-1}$) with a 14L:10D photoperiod.

Photon Counting Linear Discriminant Analysis with Integral Imaging for Occluded Target Recognition

  • Yeom, Seok-Won;Javidi, Bahram
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.88-92
    • /
    • 2008
  • This paper discusses a photon-counting linear discriminant analysis (LDA) with computational integral imaging (II). The computational II method reconstructs three-dimensional (3D) objects on the reconstruction planes located at arbitrary depth-levels. A maximum likelihood estimation (MLE) can be used to estimate the Poisson parameters of photon counts in the reconstruction space. The photon-counting LDA combined with the computational II method is developed in order to classify partially occluded objects with photon-limited images. Unknown targets are classified with the estimated Poisson parameters while reconstructed irradiance images are trained. It is shown that a low number of photons are sufficient to classify occluded objects with the proposed method.

Effects of Environmental Factors on the Growth of Gametophytes and Young Sporophytes of Eisenia bicyclis (Kjellman) Setchell (대황(Eisenia bicyclis) 배우체와 아포체의 생장에 미치는 환경 인자의 영향)

  • Lee, Min-Jeong;Kim, Nam-Gil
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2020
  • Eisenia bicyclis, a perennial macroalga is a primary producer of in the ocean, It has been identified as a key species that plays a vital role in maintaining the ecosystem stability. Also, it is an important target in marine afforestation projects and useful marine organisms. In addition, E. bicyclis is used as a health food for humans. This study investigated the effect of water temperature, light (photon irradiance), and duration of light (photoperiod) on the growth of gametophytes and young sporophytes of E. bicyclis. The germination and growth of the zoospores of E. bicyclis were examined at five temperatures (5℃, 10℃, 15℃, 20℃ and 25℃), four intensities of photon irradiance (10, 20, 40, and 80 μmol m-2s-1), and photoperiods (14:10 and 10:14 light/dark cycles). The zoospores released from mature plant germinated into the gametophytes under all experimental conditions. The gametophytes were able to grow at water temperature 5℃-25℃ and mature at 10℃-20℃. The optimal range of water temperature for the maturation of the gametophyte was 15℃-20℃. At 25℃, E. bicyclis gametophytes grew rapidly but did not mature. The optimal culture conditions for the growth of young sporophytes grew slowly in low temperature and photon irradiances.

Enhance photoelectric efficiency of PV by optical-thermal management of nanofilm reflector

  • Liang, Huaxu;Wang, Baisheng;Su, Ronghua;Zhang, Ao;Wang, Fuqiang;Shuai, Yong
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.475-485
    • /
    • 2022
  • Crystalline silicon photovoltaic cells have advantages of zero pollution, large scale and high reliability. A major challenge is that sunlight wavelength with photon energy lower than semiconductor band gap is converted into heat and increase its temperature and reduce its conversion efficiency. Traditional cooling PV method is using water flowing below the modules to cool down PV temperature. In this paper, the idea is proposed to reduce the temperature of the module and improve the energy conversion efficiency of the module through the modulation of the solar spectrum. A spectrally selective nanofilm reflector located directly on the surface of PV is designed, which can reflect sunlight wavelength with low photon energy, and even enhance absorption of sunlight wavelength with high photon energy. The results indicate that nanofilm reflector can reduce spectral reflectivity integral from 9.0% to 6.93% in 400~1100 nm wavelength range, and improve spectral reflectivity integral from 23.1% to 78.34% in long wavelength range. The nanofilm reflector can reduce temperature of PV by 4.51℃ and relatively improved energy conversion efficiency of PV by 1.25% when solar irradiance is 1000 W/m2. Furthermore, the nanofilm reflector is insensitive in sunlight's angle and polarization state, and be suitable for high irradiance environment.

Response of Oxygen Consumption and Gill Tissue of Fish Exposed to Red Tide Organism Cochlodinium polykrikoides (적조생물 Cochlodinium polykrikoides에 노출된 어류의 산소 소모량 및 조직 변화)

  • Shim, Jeong-Min;Lee, Chu;Lee, Yong-Hwa;Kim, Bong-Suck
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1283-1289
    • /
    • 2009
  • Eco-physiological research and the control of Cochlodinium polykrikoides was carried out to elucidate eco-physiological characteristics of red tide organism through culture experiment depending on the condition of photon irradiance. Oxygen consumption of C. polykrikoides was high with a value of 1.12 mg/L/hr in the dark compared with that of 0.13 mg/L/hr at $100{\mu}mEm^{-2}s^{-1}$. DO values in a circular chamber with the lapse of time in seawater containing C. polykrikoides were declined in the dark period. DO values of seawater containing C. polykrikoides in the dark were declined from 7.01 mg/L to 2.65 mg/L in 30 cm depth and from 7.01 mg/L to 6.63 mg/L in 5 cm depth depending on the depth of circular culture vessel. Olive flounder, Paralichthys olivaceus and file fish, Stephanolepis cirrhifer exposed to Cochlodinium showed the separation of the lamella epithelium from gill filament, which disrupted the respiratory process at the gill level.

Analysis of Harmonic Mean Distance Calculation in Global Illumination Algorithms (전역 조명 알고리즘에서의 조화 평균 거리 계산의 분석)

  • Cha, Deuk-Hyun;Ihm, In-Sung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.2
    • /
    • pp.186-200
    • /
    • 2010
  • In order to render global illumination realistically, we need to accurately compute the direct and indirect illumination that represents the light information incoming through complex light paths. In this process, the indirect illumination at given point is greatly affected by surrounding geometries. Harmonic mean distance is a mathematical tool which is often used as a metric indicating the distance from a surface point to its visible objects in 3D space, and plays a key role in such advanced global illumination algorithms as irradiance/radiance caching and ambient occlusion. In this paper, we analyze the accuracy of harmonic mean distance estimated against various environments in the final gathering and photon mapping methods. Based on the experimental results, we discuss our experiences and future directions that may help develop an effective harmonic mean distance computation method in the future.

Growth Response of the Dinoflagellate Akashiwo sanguinea in Relation to Temperature, Salinity and Irradiance, and its Advantage in Species Succession (무각 와편모조류 Akashiwo sanguinea의 수온, 염분 그리고 광 조건에 따른 생장반응과 그에 따른 종 천이의 이점)

  • Kwon, Hyeong-Kyu;Oh, Seok-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • The effects of temperature, salinity and irradiance on the growth of the dinoflagellate Akashiwo sanguinea isolated from Jaran Bay were examined in the laboratory. Maximum specific growth rate($0.28day^{-1}$) was observed with combination of $25^{\circ}C$ and 30 psu. Optimal growth (${\geq}80%$ of maximum specific growth rate) was obtained at $25^{\circ}C$ with salinities of 15~35 psu. This results indicated that A. sanguinea is a stenothermal of the high water temperature and euryhaline species. The irradiance-growth curve was described as ${\mu}=0.31(I-16.87)/(I+51.19)$. The compensation photon flux density ($I_0$) and half-saturation photon flux density ($K_I$) were $16.87{\mu}mol\;m^{-2}s^{-1}$ and $84.93{\mu}mol\;m^{-2}s^{-1}$, respectively. In conclustion, A. sanguinea has advantage physiological characteristics for the species succession at the coastal areas in summer with sufficient irradiance, high water temperature and large salinity gradient.

The Effect of Temperature, Salinity and Irradiance on the Growth of Alexandrium affine (Dinophyceae) Isolated from Southern Sea of Korea (한국 남해에서 분리한 와편모조류 Alexandrium affine의 생장에 미치는 수온, 염분 그리고 광량의 영향)

  • Kim, Ji Hye;Oh, Seok Jin;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.229-236
    • /
    • 2019
  • The effects of temperature, salinity and irradiance on the growth of dinoflagellate Alexandrium affine were examined. A maximum specific growth rate ($0.69day^{-1}$) was observed with a combination of $25^{\circ}C$ and 25 psu. Optimal growth (80 % of the maximum specific growth rate) was obtained at $20-26^{\circ}C$ with salinities of 20-35 psu. The results indicated that A. affine is relatively stenothermal of given high water temperature and is a euryhaline species. The irradiance-growth curve found can be described as ${\mu}=0.75(I-4.25)/(I+65.47)$. The compensation photon flux density ($I_c$) and half-saturation photon flux density ($K_I$) were $4.25{\mu}mol\;m^{-2}s^{-1}$ and $57.0{\mu}mol\;m^{-2}s^{-1}$, respectively. In conclusion, A. affine has advantageous physiological characteristics that enable it to be a dominant species in coastal areas with high water temperature and a large salinity gradient, in spite of relatively low irradiance.

Effects of Irradiance on the Growth of the Toxic Dinoflagellates Alexandrium tamarense and Alexandrium catenella (유독와편모조류 Alexandrium tamarense와 Alexandrium catenella의 성장에 미치는 조도의 영향)

  • Kwon, Hyeong-Kyu;Park, Ji-A;Yang, Han-Soeb;Oh, Seok Jin
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1571-1577
    • /
    • 2013
  • The effects of irradiance on the growth of toxic dinoflagellates Alexandrium tamarense (Masan Bay strain) and Alexandrium catenella (Jinhae Bay strain) were investigated in the laboratory. At $15^{\circ}C$ and 30 psu for A. tamarense and $25^{\circ}C$ and 30 psu for A. catenella, the irradiance-growth curve showed the maximum growth rate (${\mu}_{max}$) of 0.31 $day^{-1}$ with half-saturation photon flux density (PFD) ($K_I$) of 44.53 ${\mu}molm^{-2}s^{-1}$, and a compensation PFD ($I_c$) was 20.67 ${\mu}molm^{-2}s^{-1}$ for A. tamarense, and ${\mu}_{max}$ of 0.38 $day^{-1}$ with $K_I$ of 59.53 ${\mu}molm^{-2}s^{-1}$, and $I_c$ was 40.80 ${\mu}molm^{-2}s^{-1}$ for A. catenella. The $I_c$ equated to a depth of 8~9 m from March to June for A. tamarense and 6~7 m from March to June for A. catenella. These responses suggested that irradiance at the depth near the middle layer in Masan Bay would provide favorable conditions for two species.

Effects of Water Temperature, Salinity and Irradiance on the Growth of the Harmful Algae Chattonella marina (Subrahmanyn) Hara et Chihara (Raphidophyceae) Isolated from Gamak Bay, Korea (가막만에서 분리한 유해성 침편모조류 Chattonella merina (Subrahmanyn) Hara et Chihara (Raphidophyceae)의 성장에 미치는 수온, 염분 및 빛의 영향)

  • Noh, Il-Hyeon;Yoon, Yang-Ho;Kim, Dae-Il;Oh, Seok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.487-494
    • /
    • 2006
  • The effects of water temperature, salinity and irradiance on the growth of harmful algae Chattonella marina isolated from Gamak Bay in South Sea, Korea were investigated. C. marina was able to grow in temperatures of $15-30^{\circ}C$ and salinities of 10-35 psu. Maximum specific growth rate (0.64/day) was observed with combination of $25^{\circ}C$ and 25 psu. Optimal growth (${\ge}70%$ of maximum specific growth rate) was obtained with all salinities of the above $20^{\circ}C$. This result indicated that C. marina is a stenothermal of the high water temperature and euryhaline organism. C. marina was did not grow at irradiance ${\le} 10{\mu}mol$ photons/($m^2\;s$). Photoinhibition did not occur at $300{\mu}mol$ photons/($m^2\;s$), which was the maximum irradiance used in this study. The irradiance-growth curve was described as ${\mu}=0.78(I-11.4)/(I+34.1)$ at $25^{\circ}C$ and 25 psu. The half-saturation photon flux density (PFD) ($K_s$) was $56.9{\mu}mol$ photons/($m^2\;s$) and compensation PFD ($I_c$) was $11.4{\mu}mol$ photons/($m^2\;s$). The result of the present study indicate that C. marina has advantage physiological characteristic to the interspecific competition at the embayment and costal areas of South and West Sea, Korea in summer.