• Title/Summary/Keyword: Photon characteristics

Search Result 269, Processing Time 0.028 seconds

Supercontinuum Generation with Femtosecond Pulses and Photonic Crystal Fibers (펨토초 펄스와 광결정 광섬유를 이용한 초 연속스펙트럼의 발생)

  • Choi, Hyoung-Gye;Kim, So-An;Kee, Chul-Sik;Sung, Jae-Hee;Yu, Tae-Jun;Ko, Do-Kyeong;Lee, Jong-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.345-350
    • /
    • 2007
  • The characteristics of the supercontinuum generated in photonic crystal fibers were investigated by using the generalized nonlinear $Schr\"{o}dinger$ equation and the split-step Fourier method. Based on the simulated results, we generated the supercontinuum spectrum with the flatness of ${\pm}4dB$ in the wavelength range of 650 to 900 nm by employing a 200-fs pulse of Ti:sapphire laser and a commercial photonic crystal fiber.

Calculation of Photon Spectra from the Tungsten Target for 10 MeV Electron Beam (10 MeV의 전자선이 텅스텐 표적에 충돌하여 생성되는 광자선 스펙트럼의 계산)

  • 이정옥;정동혁;문성록;강정구;김승곤
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 1999
  • In an effort to study the characteristics of x-rays utilized in radiation therapy, we calculated the energy distribution and the mean energy of x-rays generated from a tungsten target bombarded by 6, 10, and 15 MeV electron beams, using a Monte Carlo technique. The average photon energies calculated as a function of the beam radius lied in 1.4 ∼ 1.6, 2.1 ∼ 2.5 and 2.8 ∼ 3.3 MeV ranges for 4, 10, and 15 MV electron beams, respectively, which turned out to have no strong dependence on the radius. Using the energy distributions of 6,10, and 15 MV x-rays obtained for the target distance of 100 cm, percentage depth doses were determined using Monte Carlo calculations. For the case 10 MV, a comparison was made between our calculation and measurement performed by others. The calculated percentage depth dose appeared somewhat smaller than the measured one except in the surface region. We conclude that this is due to the fact that the beam hardening effect resulting from the flattening filter was not properly allowed for in our Monte Carlo calculations.

  • PDF

Gamma radiation attenuation properties of tellurite glasses: A comparative study

  • Al-Hadeethi, Y.;Sayyed, M.I.;Tijani, S.A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2005-2012
    • /
    • 2019
  • This work investigated the radiation attenuation characteristics of three series of tellurite glass systems with the following compositions: 30PbO-10ZnO-xTeO2-(60-x)B2O3 where x = 10, 30, 40, 50 and 60 mol%, xBaO-xB2O3-(100-2x)TeO2 with x = 15-40 mol% and 50ZnO-(50-x)P2O5-xTeO2, where x = 0, 10, .40 mol%. The results revealed that the attenuation parameters in all the samples decrease with increase in the energy, which implied that all the samples have better interaction with gamma photons at low energies and thus higher photon attenuating efficiency. From the three systems, the samples coded as PbZnBTe60, BaBTe70 and ZnPTe40 have the lowest half value layer values and accordingly have superior photon attenuation efficacy. The maximum effective atomic number values were found for energy less than 0.1 MeV particularly near the K-edges absorption of the heavy atomic number elements such as Te, Ba and Pb. At the lowest energy, the Zeff values are found in the range of 62.33-66.25, 49.43-50.81 and 24.99-35.83 for series 1-3 respectively. Also, we found that the density of the glass remarkably affects the photon attenuation ability of the selected glasses. The mean free path results showed that the PbO-ZnO-TeO2-B2O3 glass system has better radiation shielding efficiency than the glass samples in series 2 and 3.

Characteristic Evaluation of Pressure Mapping System for Patient Position Monitoring in Radiation Therapy

  • Kang, Seonghee;Choi, Chang Heon;Park, Jong Min;Chung, Jin-Beom;Eom, Keun-Yong;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.153-158
    • /
    • 2021
  • Purpose: This study evaluated the features of a pressure mapping system for patient motion monitoring in radiation therapy. Methods: The pressure mapping system includes an MS 9802 force sensing resistor (FSR) sensor with 2,304 force sensing nodes using 48 columns and 48 rows, controller, and control PC (personal computer). Radiation beam attenuation caused by pressure mapping sensor and signal perturbation by 6 and 10 mega voltage (MV) photon beam was evaluated. The maximum relative pressure value (mRPV), average relative pressure value (aRPV), the center of pressure (COP), and area of pressure distribution were obtained with/without radiation using the upper body of an anthropomorphic phantom for 30 minutes with 15 MV. Results: It was confirmed that the differences in attenuation induced by the FSR sensor for 6 and 10 MV photon beams were small. The differences in mRPV, aRPV, area of pressure distribution with/without radiation are about 0.6%, 1.2%, and 0.5%, respectively. The COP values with/without radiation were also similar. Conclusions: The characteristics of a pressure mapping system during radiation treatment were evaluated on the basis of attenuation and signal perturbation using radiation. The pressure distribution measured using the FSR sensor with little attenuation and signal perturbation by the MV photon beam would be helpful for patient motion monitoring.

Characteristics of Si impurity doped MgO in an ac PDP

  • Ha, Chang-Hoon;Kim, Joong-Kyun;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1391-1394
    • /
    • 2007
  • In this work, the discharge characteristics and temporal distribution of surface charges on the Sidoped MgO have been investigated and elucidated with the results of photon-induced surface current. Even though the Si doped MgO shows lower static voltage margin, higher luminous efficacy, and shorter statistical delay time, its discharge characteristics become deteriorated as the timing of scanning is delayed from the ramp type reset pulse down. Overall features of Si-doped MgO in discharge characteristics are well correlated with surface current characteristics.

  • PDF

Response of Oxygen Consumption and Gill Tissue of Fish Exposed to Red Tide Organism Cochlodinium polykrikoides (적조생물 Cochlodinium polykrikoides에 노출된 어류의 산소 소모량 및 조직 변화)

  • Shim, Jeong-Min;Lee, Chu;Lee, Yong-Hwa;Kim, Bong-Suck
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1283-1289
    • /
    • 2009
  • Eco-physiological research and the control of Cochlodinium polykrikoides was carried out to elucidate eco-physiological characteristics of red tide organism through culture experiment depending on the condition of photon irradiance. Oxygen consumption of C. polykrikoides was high with a value of 1.12 mg/L/hr in the dark compared with that of 0.13 mg/L/hr at $100{\mu}mEm^{-2}s^{-1}$. DO values in a circular chamber with the lapse of time in seawater containing C. polykrikoides were declined in the dark period. DO values of seawater containing C. polykrikoides in the dark were declined from 7.01 mg/L to 2.65 mg/L in 30 cm depth and from 7.01 mg/L to 6.63 mg/L in 5 cm depth depending on the depth of circular culture vessel. Olive flounder, Paralichthys olivaceus and file fish, Stephanolepis cirrhifer exposed to Cochlodinium showed the separation of the lamella epithelium from gill filament, which disrupted the respiratory process at the gill level.

New DOI Detector Using a Bottom and Side Readouts with a Cross-Arranged Scintillator Array for Positron Emission Tomography

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1904-1907
    • /
    • 2018
  • We designed a depth-encoding positron emission tomography (PET) detector by using a bottom and side readout method with a cross-arranged scintillator array. To evaluate the characteristics of the novel detector module, we used the DETECT2000 simulation tool to perform the optical photon transport in the crystal array. The detector module consists of an $M(column){\times}N(row)$ cross-arranged crystal array composed of M/3 sub-arrays consisting of $N{\times}3$ crystals. The second column of the sub-array is arranged perpendicular to the first and the third columns. The crystal is optically coupled to the crystals of the other columns; however, the surfaces between the crystals in the same column are treated as reflectors. A $6{\times}5$ crystal array consisting of two sub-arrays was considered for proof of concept. The two multi-pixel photon counter (MPPC) arrays are coupled to the bottom and one side of the crystal array, respectively. The x-y position is determined by the bottom MPPC array, and the side MPPC array gives depth information. All pixels in the x-y plane and the z direction were clearly distinguished.

Peripheral Dose Distributions of Clinical Photon Beams (광자선에 의한 민조사면 경계영역의 선량분포)

  • 김진기;김정수;권형철
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • The region, near the edge of a radiation beam, where the dose changes rapidly according to the distance from the beam axis is known as the penumbra. There is a sharp dose gradient zone even in megavoltage photon beams due to source size, collimator, lead alloy block, other accessories, and internal scatter ray. We investigate dosimetric characteristics on penumbra regions of a standard collimator and compare to those of theoritical model for the optimal use of the system in radiotherapy. Peripheral dose distribution of 6 W Photon beams represents penumbral forming function as the depth. Also we have discussed that the peripheral dose distribution of clinical photon beams, differences between calculation dose use of emperical penumbral forming function and measurements in penumbral region. Predictions by emperical penumbral forming functions are compared with measurements in 3-dimensional water phantom and it is shown that the method is capable of reproduceing the measured peripheral dose values usually to within the statistical uncertainties of the data. The semiconductor detector and ion chamber were positioned at a dmax depth, 5cm depth, 10cm depth, and its specific ratio was determined using a scanning data. The effective penumbra, the distance from 80% to 20% isodose lines were analyzed as a function of the distance. The extent of penumbra will also expand with depth increase. Difference of measurement value and model functions value according to character of the detector show small error in dose distribution of the peripheral dose.

  • PDF

Analyzing a Physical Marker to Identify Irradiated Dried Garlic and Cabbage (건마늘과 건양배추의 방사선 조사여부 확인을 위한 물리적 마커 분석)

  • Kim, Dong-Gil;Ahn, Jae-Jun;Jin, Qiong-Wen;Lee, Ho-Cheon;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.136-140
    • /
    • 2009
  • The verification of irradiation treatments, using dried garlic and cabbage treated at 0-20 kGy, was investigated by analyzing the photostimulated luminescence (PSL), electron spin resonance (ESR) and thermoluminescence (TL) characteristics of the samples. The PSL results showed that the photon counts/60 sec of the non-irradiated dried garlic and cabbage were 287-337, corresponding to negative, while those of the irradiated samples were 7511-54063 photon counts/ 60 sec, corresponding to positive, making it possible to discriminate the non-irradiated from the irradiated samples. In ESR analysis, the dried garlic irradiated at 20 kGy exhibited cellulose radicals, whereas the irradiated dried cabbage showed crystalline sugar-induced multi-component signals, which were not found in the non-irradiated samples. The ESR signal intensity significantly increased as the irradiation dose increase ($R^2$= 0.9369 - 0.9926). The TL glow curves of the irradiated samples appeared at a temperature interval of 150-250, which were significantly different from those of non-irradiated samples, showing a significant increase in TL signal intensity with irradiation dose ($R^2$= 0.9670 - 0.9768). To enhance the reliability of the results, the first glow curve ($TL_1$) was compared with the second glow curve ($TL_2$) obtained after a re-irradiation step at 1 kGy. The TL ratio ($TL_1/TL_2$) was in good agreement with the reported TL threshold values for both the non-irradiated (<0.1) and irradiated (> 0.1) samples.

Dosimetric Properties of LiF:Mg,Cu,Na,Si TL pellets (LiF:Mg,Cu,Na,Si TL 소자의 선량계적 특성)

  • Nam, Young-Mi;Kim, Jang-Lyul;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • Sintered LiF:Mg,Cu,Na,Si thermoluminescence (TL) pellets were developed for application in radiation dosimetry. In the present study, the TL dosimetric properties of LiF:Mg,Cu,Na,Si TL pellets have been investigated for emission spectrum, dose response, energy response, and fading characteristics. LiF:Mg,Cu,Na,Si TL pellets were made by using a sintering process, that is, pressing and heat treatment from TL powders. Photon irradiations for the experiments were carried out using X-ray beams and a $^{137}Cs$ gamma source at the Korea Atomic Energy Research Institute (KAERI). The average energies and the dose were in the range of 20-662 keV and $10^{-6}-10^{-2}\;Gy$, respectively. The glow curves were measured with a manual type TLD reader(System 310, Teledyne) at a constant nitrogen flux and a linear heating rate. For a constant heating rate of $5^{\circ}C\;s^{-1}$, the main dosimetric peak of glow curve appeared at $234^{\circ}C$, the activation energy was 2.34 eV and frequency factor was $1.00{\times}10^{23}$. TL emission spectrum is appeared at the blue region centered at 410 nm. A linearity of photon dose response was maintained up to 100 Gy. The photon energy responses relative to $^{137}Cs$ response were within ${\pm}20%$ at overall photon energy region. The fading of TL sensitivity of the pellets stored at the room temperature was not found for one year.

  • PDF