• 제목/요약/키워드: Photolithography Process

검색결과 251건 처리시간 0.03초

저온동시소성용 감광성 은(Ag)페이스트의 광식각 특성 (Photolithographic Properties of Photosensitive Ag Paste for Low Temperature Cofiring)

  • Park, Seong-Dae;Kang, Na-Min;Lim, Jin-Kyu;Kim, Dong-Kook;Kang, Nam-Kee;Park, Jong-Chul
    • 한국세라믹학회지
    • /
    • 제41권4호
    • /
    • pp.313-322
    • /
    • 2004
  • 후막 광식각 기술은 스크린 인쇄 등의 일반적인 후막공정에 노광 및 현상 등의 리소그라피 공정을 접목시킨 새로운 기술이다. 본 연구에서는 후막 광식각 기술을 이용하여 미세라인을 형성할 수 있는 저온동시소성용 Ag 페이스트를 개발하였다. 페이스트를 구성하는 Ag분말과 폴리머, 모노머, 광개시제 등의 양을 조절하여 미세라인을 형성할 수 있는 최적 조성을 연구하였으며. 또한 노광량과 같은 공정변수가 미세라인 형성에 미치는 영향을 연구하였다. 실험결과 폴리머/모노머비, Ag 분말 중량비, 광개시제의 양 등이 미세라인의 해상도에 영향을 미치는 주요 인자임을 확인할 수 있었다. 개발된 감광성 Ag 페이스트를 저온동시소성용 그린 시트에 전면 인쇄한 후 건조, 노광, 현상, 적층, 소성 과정을 통하여, 소성 후 20$\mu\textrm{m}$ 이하의 선폭을 가지는 후막 미세라인을 형성할 수 있었다.

Particle Replication In Non-Wetting Templates (PRINT) 방법을 이용한 약물 및 유전자 전달체의 제작 (Fabrication of Non Viral Vector for Drug and Gene Delivery using Particle Replication In Non-Wetting Templates (PRINT) Technique)

  • 박지영;;;임종성
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.493-499
    • /
    • 2007
  • 본 연구에서는 UV photo-lithography 방식의 particle replication in non-wetting templates(PRINT) 법을 이용하여 약물 전달에 운반체로 사용되는 $3{\mu}m{\times}3{\mu}m{\times}2{\mu}m$ 사이즈의 균일한 고분자 하이드로젤 입자를 제조하였다. 몰드(mold)와 기재(substrate)는 PRINT 방식을 통하여 탄성을 지닌 perfluoropolyethers(PFPE)로 제작하였으며 이를 반복적으로 사용할 수 있도록 하였다. 제작된 입자는 점착성이 있는 수용성 고분자를 이용하여 회수하였다. 입자의 주요 성분은 생분해성 고분자인 poly(ethylene glycol) diacrylate(PEG-diA)이며, 세포 uptake에 적합하도록 aminoethylacrylate(AEM)와 2-acryloxyethyltrimethyl ammonium chloride(AETMAC)를 첨가하였다. 본 연구를 통해 균일하고 원하는 크기의 생체분해성 고분자 입자를 제작하는 PRINT 기술이 약물 전달 및 유전자 전달에 필요한 수송체인 비바이럴 벡터를 제작하기 위한 효과적인 기술임을 제시하였다.

Infinitely high selectivity etching of SnO2 binary mask in the new absorber material for EUVL using inductively coupled plasma

  • Lee, S.J.;Jung, C.Y.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.285-285
    • /
    • 2011
  • EUVL (Extreme Ultra Violet Lithography) is one of competitive lithographic technologies for sub-30nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance since the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

Gold Stripe Optical Waveguides Fabricated by a Novel Double-Layered Liftoff Process

  • Kim, Jin-Tae;Park, Sun-Tak;Park, Seung-Koo;Kim, Min-Su;Lee, Myung-Hyun;Ju, Jung-Jin
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.778-783
    • /
    • 2009
  • To fabricate uniform and reliable thin gold stripes that provide low-loss optical waveguides, we developed a novel liftoff process placing an additional $SiN_x$ layer under conventional photoresists. By patterning a photoresist and over-etching the $SiN_x$, the photoresist patterns become free-standing structures on a lower-cladding. This leads to uniform metal stripes with good reproducibility and effectively removes parasitic structures on the edge of the metal stripe in the image reversal photolithography process. By applying the newly developed process to polymer-based gold stripe waveguide fabrication, we improved the propagation losses about two times compared with that incurred by the conventional image-reversal process.

Adaptive DeadBand를 애용한 반도체공정 제어 (Research for Adaptive DeadBand Control in Semiconductor Manufacturing)

  • 김준석;고효헌;김성식
    • 대한안전경영과학회지
    • /
    • 제7권5호
    • /
    • pp.255-273
    • /
    • 2005
  • Overlay parameter control of the semiconductor photolithography process is researched in this paper. Overlay parameters denote the error in superposing the current pattern to the pattern previously created. The reduction of the overlay deviation is one of the key factors in improving the quality of the semiconductor products. The semiconductor process is affected by numerous environment and equipment factors. Through process condition prediction and control, the overlay inaccuracy can be reduced. Generally, three types of process condition change exist; uncontrollable white noise, slowly changing drift, and abrupt condition shift. To effectively control the aforementioned process changes, control scheme using adaptive deadband is proposed. The suggested approach and existing control method are cross evaluated through simulation.

Humidity Induced Defect Generation and Its Control during Organic Bottom Anti-reflective Coating in the Photo Lithography Process of Semiconductors

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of information and communication convergence engineering
    • /
    • 제10권3호
    • /
    • pp.295-299
    • /
    • 2012
  • Defect generation during organic bottom anti-reflective coating (BARC) in the photo lithography process is closely related to humidity control in the BARC coating unit. Defects are related to the water component due to the humidity and act as a blocking material for the etching process, resulting in an extreme pattern bridging in the subsequent BARC etching process of the poly etch step. In this paper, the lower limit for the humidity that should be stringently controlled for to prevent defect generation during BARC coating is proposed. Various images of defects are inspected using various inspection tools utilizing optical and electron beams. The mechanism for defect generation only in the specific BARC coating step is analyzed and explained. The BARC defect-induced gate pattern bridging mechanism in the lithography process is also well explained in this paper.

후막리소그라피를 이용한 세라믹기반의 미세유체소자용 수동형 혼합기의 제조 (Fabrication of Ceramic-based Passive Mixers for Microfluidic Application by Thick Film Lithography)

  • 최재경;윤영준;임종우;김효태;구은회;최윤석;이종흔;김종희
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.739-743
    • /
    • 2008
  • Microfluidic device can be applied in a wide range of chemical and biological technology. In this paper, ceramic-based T-type passive mixers for microfluidic applications were fabricated by LTCC process combined with thick film photolithography. The base ceramic material in thick film was amorphous cordierite $((Mg,Ca)_2Al_4Si_5O_{18})$ and photoimageable polymers were added to give a photosensitivity. Two types of passive mixer, which showed the channel width of 1.0 mm and $200{\mu}m$, respectively, were designed considering mixing efficiency in the channel and their microfluidic properties were discussed in detail.

고정밀 레이저 가공 기술을 이용한 PRT 제작 및 특성 분석 (Fabrication and Analysis of Characteristics of PRT using High-fine Laser Trimming Technology)

  • 노상수;서정환;정귀상;김광호
    • 한국전기전자재료학회논문지
    • /
    • 제16권1호
    • /
    • pp.46-52
    • /
    • 2003
  • In this paper, we fabricated PRT(platinum resistance thermometers) with the trimming technology using high fine laser system. U. V.(wavelength: 355nm) laser was mainly used for adjusting Pt thin films resistors to 100Ω at 0$^{\circ}C$. Internationally, the accepted A-class tolerance of temperature sensor is ${\pm}$0.06Ω at 0$^{\circ}C$. according to DIN EN 60751. The width of trimmed lines was about 10$\mu\textrm{m}$ and the best trimming conditions of Pt thin films were power : 37mW, frequency : 200Hz and bite size:1.5$\mu\textrm{m}$. And 96 resistors, fabricated by photolithography and etching process, have 79∼90Ω and 91∼102Ω as the proportion of 45.7% and 57.3%, respectively. As result of sitting Pt thin films resistors to the target value(109.73Ω at 25$^{\circ}C$), 82.3% of all resistors had the tolerance within ${\pm}$0.03Ω and the others(17.7%) were within ${\pm}$0.06Ω of A-class tolerance. The PRTs which wore fabricated in this research had excellent characteristics as follows; high accuracy, international standard TCR(temperature coefficient of resistance) value, long-term stability, wide temperature range, good linearity and repeatability, rapid response time, etc.

단일 원소 금속의 영역 선택적 원자층 증착법 연구 동향 (Recent Studies on Area Selective Atomic Layer Deposition of Elemental Metals)

  • 조민규;고재희;최병준
    • 한국분말재료학회지
    • /
    • 제30권2호
    • /
    • pp.156-168
    • /
    • 2023
  • The semiconductor industry faces physical limitations due to its top-down manufacturing processes. High cost of EUV equipment, time loss during tens or hundreds of photolithography steps, overlay, etch process errors, and contamination issues owing to photolithography still exist and may become more serious with the miniaturization of semiconductor devices. Therefore, a bottom-up approach is required to overcome these issues. The key technology that enables bottom-up semiconductor manufacturing is area-selective atomic layer deposition (ASALD). Here, various ASALD processes for elemental metals, such as Co, Cu, Ir, Ni, Pt, and Ru, are reviewed. Surface treatments using chemical species, such as self-assembled monolayers and small-molecule inhibitors, to control the hydrophilicity of the surface have been introduced. Finally, we discuss the future applications of metal ASALD processes.

Synthesis of Imide Monomers for Application to Organic Photosensitive Interdielectric Layer

  • Kwon, Hyeok-Yong;Vu, Quang Hung;Lee, Yun-Soo;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.816-819
    • /
    • 2008
  • A negative photoresist formulation was developed utilizing synthesized UV monomers containing imide linkage, photoinitiator, UV oligomer, and alkali developable polymer matrix. It was found that via-holes with good resolution, high transmittance and thermal resistance could be obtained by photolithographic process utilizing the negative-type photoresist formulations.

  • PDF