• Title/Summary/Keyword: Photographic infrared thermometer

Search Result 2, Processing Time 0.015 seconds

Thermal Characteristics and Heatsink Modeling. for IGBT (IGBT의 열 특성 및 히트싱크 모델링)

  • Ryu, Se-Hwan;Bea, Kyung-Kuk;Shin, Ho-Chul;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.172-173
    • /
    • 2007
  • As the power density and switching frequency increase, thermal analysis of power electronics system becomes imperative. The thermal analysis provides valuable information on the semiconductor rating, long-term reliability. In this paper, thermal distribution of the Non Punchthrough(NPT) Insulated Gate Bipolar Transistor has been studied. For analysis of thermal distribution, we obtained experimental and simulation results by using finite element simulator, Ansys and by using photographic infrared thermometer, we compared experimental date with simulation result. and got good agreement. Also this paper provided thermal distribution of IGBT connected to heat sinks. and this results will be good information to design optimal heat sink for IGBT.

  • PDF

Generation of Land Surface Temperature Orthophoto and Temperature Accuracy Analysis by Land Covers Based on Thermal Infrared Sensor Mounted on Unmanned Aerial Vehicle (무인항공기에 탑재된 열적외선 센서 기반의 지표면 온도 정사영상 제작 및 피복별 온도 정확도 분석)

  • Park, Jin Hwan;Lee, Ki Rim;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.263-270
    • /
    • 2018
  • Land surface temperature is known to be an important factor in understanding the interactions of the ground-atmosphere. However, because of the large spatio-temporal variability, regular observation is rarely made. The existing land surface temperature is observed using satellite images, but due to the nature of satellite, it has the limit of long revisit period and low accuracy. In this study, in order to confirm the possibility of replacing land surface temperature observation using satellite imagery, images acquired by TIR (Thermal Infrared) sensor mounted on UAV (Unmanned Aerial Vehicle) are used. The acquired images were transformed from JPEG (Joint Photographic Experts Group) to TIFF (Tagged Image File Format) format and orthophoto was then generated. The DN (Digital Number) value of orthophoto was used to calculate the actual land surface temperature. In order to evaluate the accuracy of the calculated land surface temperature, the land surface temperature was compared with the land surface temperature directly observed with an infrared thermometer at the same time. When comparing the observed land surface temperatures in two ways, the accuracy of all the land covers was below the measure accuracy of the TIR sensor. Therefore, the possibility of replacing the satellite image, which is a conventional land surface temperature observation method, is confirmed by using the TIR sensor mounted on UAV.