• Title/Summary/Keyword: Photocataytic Oxidation

Search Result 2, Processing Time 0.015 seconds

Photocatalytic Oxidation of Humic Acid by various commerical TiO2: A Comparative Study (부식산의 광촉매 산화 공정에 도입된 여러 종류의 상용 TiO2 비교연구)

  • Mun, Kyung-Suk;Kim, Da-Hee;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.21-26
    • /
    • 2001
  • In this study, the effects of crystalinity, composition and particle size of $TiO_2$ catalysts on the degradations of humic acid in aqueous solution was assessed using the commercially avaliable $TiO_2$ particles. Photocatalytic oxidations of humic acid (HA, Aldrich Co.) solution were carried out in case of adding different types of $TiO_2$ catalysts and their decomposition efficiencies were analyzed with respect to pH, DOC and UV absorbances values for the HA solutions and compared one another. The experimental results showed that $TiO_2$ particles(Degussa P-25) mixed with anataze and rutile gave the highest degradation efficiencies, respectively and much lower degradation efficiency in $TiO_2$ paticles of rutile only type. In comparing among ST series of anataze types, it was observed that the degradation efficiencies generally were increased with increasing $TiO_2$ contents and surface area of the particles. Higher degradation efficiency of HA was also found in zeolite type(D-TZ) of $TiO_2$ paticles compared with hydroxyapatite type (D-TH) of $TiO_2$ particles.

  • PDF

Characterization of Methylene Blue Decomposition on Fe-ACF/TiO2 Photocatalysts Under UV Irradiation with or Without H2O2

  • Zhang, Kan;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.481-487
    • /
    • 2009
  • The photocatalysts of Fe-ACF/$TiO_2$ compositeswere prepared by the sol-gel method and characterized by BET, XRD, SEM, and EDX. It showed that the BET surface area was related to adsorption capacity for each composite. The SEM results showed that ferric compound and titanium dioxide were distributed on the surfaces of ACF. The XRD results showed that Fe-ACF/$TiO_2$ composite only contained an anatase structure with a Fe mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in Fe-ACF/$TiO_2$ composites. From the photocataytic degradation effect, $TiO_2$ on activated carbon fiber surface modified with Fe (Fe-ACF/$TiO_2$) could work in the photo-Fenton process. It was revealed that the photo-Fenton reaction gives considerable photocatalytic ability for the decomposition of methylene blue (MB) compared to non-treated ACF/$TiO_2$, and the photo-Fenton reaction was improved by the addition of $H_2O_2$. It was proved that the decomposition of MB under UV (365 nm) irradiation in the presence of $H_2O_2$ predominantly accelerated the oxidation of $Fe^{2+}$ to $Fe^{3+}$ and produced a high concentration of OH radicals.