• 제목/요약/키워드: Photocatalytic oxidation

검색결과 165건 처리시간 0.032초

연속흐름식 반응기를 이용한 모노-, 디-, 트리 클로로페놀의 광촉매반응에 관한 연구 (Photocatalytic Degradation of Mono-, Di-, Tri-chorophenols using continuous Flow Reactor)

  • 이상협;박중현
    • 상하수도학회지
    • /
    • 제12권1호
    • /
    • pp.88-95
    • /
    • 1998
  • The Electron/Hole Pair is generated when the Activation Energy produces by Ultraviolet Ray illumination to the Semiconductor. And $OH^-$ ion produces by Water Photo-Cleavage reacts with Positive Hole. As a result, OH Radical acting as strong oxidant is generated and then Photocatalytic Oxidation Reaction occurs. The Photocatalytic Oxidation can oxidize the chlorophenol to Chloride and Carbon Dioxide easier, safer and shorter than conventional Water Treatment Process With the same degree of chlorination, the $Cl^-$ ion at para (C4) position is most easily replaced by the OH radical. And then, the blocking effect of $OH^-$ ion between the $Cl^-$ ions and $Cl^-$ ions at symmetrical location is easily replaced by the OH radical. For mono-, di-, tri-chlorophenols, there is no obvious difference in decomposition rate, decomposition efficiency and completeness of the decomposition reaction except for 2,3-dichloropheno, 2,4,5-, 2,3,4-trichlorophenol. The decomposition efficiency is higher than 75% and completeness of the decomposition reaction is higher than 70%. Therefore, continuous flow photocatalytic reactor is promising process to remove the chlorinated aromatic compounds which is more toxic than non-chlorinated aromatic compound.

  • PDF

저농도 실내공기 정화를 위한 염소화 및 방향족 탄화수소의 광촉매 분해 (Photocatalytic Destruction of Chlorinated and Aromatic Hydrocarbons for Low-Level Indoor Air Cleaning)

  • 조완근;권기동;최상준;송동익
    • 한국환경과학회지
    • /
    • 제13권9호
    • /
    • pp.767-777
    • /
    • 2004
  • This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of volatile hydrocarbons(VHC) at low ppb concentrations commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) of VHC, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VHC. None of the target VHC presented significant dependence on the RH, which are inconsistent with a certain previous study that reported that under conditions of low humidity and a ppm toluene inlet level, there was a drop in the PCO efficiency with decreasing humidity. However, it is noted that the four parameters (HD, RM, FT and IPS) should be considered for better VHC removal efficiencies for the application of $TiO_2$ photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VHC at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO were a negligible addition to the indoor CO levels. These abilities can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.

Enhanced photocatalytic oxidation of humic acids using Fe3+-Zn2+ co-doped TiO2: The effects of ions in aqueous solutions

  • Yuan, Rongfang;Liu, Dan;Wang, Shaona;Zhou, Beihai;Ma, Fangshu
    • Environmental Engineering Research
    • /
    • 제23권2호
    • /
    • pp.181-188
    • /
    • 2018
  • Photocatalytic oxidation in the presence of Fe-doped, Zn-doped or Fe-Zn co-doped $TiO_2$ was used to effectively decompose humic acids (HAs) in water. The highest HAs removal efficiency (65.7%) was achieved in the presence of $500^{\circ}C$ calcined 0.0010% Fe-Zn co-doped $TiO_2$ with the Fe:Zn ratio of 3:2. The initial solution pH value, inorganic cations and anions also affected the catalyst photocatalytic ability. The HAs removal for the initial pH of 2 was the highest, and for the pH of 6 was the lowest. The photocatalytic oxidation of HAs was enhanced with the increase of the $Ca^{2+}$ or $Mg^{2+}$ concentration, and reduced when concentrations of some anions increased. The inhibition order of the anions on $TiO_2$ photocatalytic activities was $CO{_3}^{2-}$ > $HCO_3{^-}$ > $Cl^-$, but a slightly promotion was achieved when $SO{_4}^{2-}$ was added. Total organic carbon (TOC) removal was used to evaluate the actual HAs mineralization degree caused by the $500^{\circ}C$ calcined 0.0010% Fe-Zn (3:2) co-doped $TiO_2$. For tap water added with HAs, the $UV_{254}$ and TOC removal rates were 57.2% and 49.9%, respectively. The $UV_{254}$ removal efficiency was higher than that of TOC because of the generation of intermediates that could significantly reduce the $UV_{254}$, but not the TOC.

Photo and Electrocatalytic Treatment of Textile Wastewater and Its Comparison

  • Singaravadivel, C.;Vanitha, M.;Balasubramanian, N.
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권1호
    • /
    • pp.44-49
    • /
    • 2012
  • Electrochemical and photochemical techniques have been proved to be effective for the removal of organic pollutants in textile wastewater. The present study deals with degradation of synthetic textile effluents containing reactive dyes and assisting chemicals, using electro oxidation and photo catalytic treatment. The influence of various operating parameters such as dye concentration, current density, supporting electrolyte concentration and lamp intensity on TOC removal has been determined. From the present investigation it has been observed that nearly 70% of TOC removal has been recorded for electrooxidation treatment with current density 5 mA/$dm^2$, supporting electrolyte concentration of 3 g/L and in photocatalytic treatment with 250 V as optimum lamp intensity nearly 67% of TOC removal was observed. The result indicates that electro oxidation treatment is more efficient than photocatalytic treatment for dye degradation.

자외선 LED를 이용한 자유 시안의 광촉매 산화 (Photocatalytic Oxidation of Free Cyanide Using UV LED)

  • 김성희;설정우;이우춘;이상우;김순오
    • 대한환경공학회지
    • /
    • 제37권1호
    • /
    • pp.34-44
    • /
    • 2015
  • 본 연구는 기존의 광촉매 산화 기술에서 주로 사용된 자외선램프의 단점을 보완할 수 있는 대체 광원인 자외선 LED를 사용하여 자유 시안을 폐수로부터 제거하는 공정을 평가하고자 수행되었다. 특히 광촉매 산화 공정의 다양한 영향 인자들에 대해 살펴보았다. 연구 결과, 자외선 LED는 기존의 광원인 자외선램프를 대체할 수 있는 적용성을 확인할 수 있었다. 뿐만 아니라 LED 개수를 증가할수록 광촉매 산화 반응의 효율은 증가하였으나, 공정의 경제성과 효율성을 동시에 만족시키기 위해서는 최적의 LED의 개수를 선정할 필요가 있다는 것을 확인하였다. 광촉매로 이용된 아나타제(anatase), 루틸(rutile), Degussa P25 등 세 종류의 $TiO_2$ 중 Degussa P25가 가장 높은 성능을 보였으며, 아나타제(anatase)와 루틸(rutile)을 특별한 전처리 과정없이 단순하게 혼합하였을 때는 Degussa P25 만큼의 공정의 효율은 얻지 못했다. 또한 $TiO_2$의 입자 크기가 작을수록 광촉매 산화 반응이 더욱 활발하게 이루어졌다. 그리고 광촉매 산화 반응에 있어 주로 전자 수용체 역할을 수행하는 산소를 주입함으로써 공정의 효율이 증진되는 효과를 얻을 수 있었다.

화학적 산화법에 의한 부식산의 분해 처리기술에 관한 연구(I) - 광산화공정을 통한 부식산의 분해특성 분석 - (Characterization of Humic Acid in the Chemical Oxidation Technology(I) - Characteristics by Photocatalytic Oxidation Process -)

  • 김종부;이동석
    • 분석과학
    • /
    • 제13권2호
    • /
    • pp.234-240
    • /
    • 2000
  • 수질계의 부식산을 화학적 산화처리하기 위한 방법의 하나로 광산화공정을 도입하여 부식산의 특성 변화를 조사하였다. 광산화공정은 UV단독, UV/$TiO_2$ 및 UV/$H_2O_2$ 시스템을 실험하였다. UV 단독 조사시 TOC 제거율은 pH 7-9에서 가장 높았으며, 흡광도는 강알카리성 영역에서 감소율이 향상된 결과를 보였다. 각 시스템별로 처리도를 보면, UV/$TiO_2$ 시스템의 경우 $TiO_2$ 의 농도가 50ppm 일때 TOC 제거와 흡광도 감소의 효율이 높았으며 50ppm 이상을 투입해도 처리율에 변화가 없었다. UV/$H_2O_2$ 시스템에서는 과산화수소의 농도가 20mM이 최적의 주입농도로 조사되었으며, 그 이상 투입할 경우 TOC와 흡광도의 처리율이 저하되었다. 탄산이온을 첨가할 경우, TOC 제거율 및 UV 흡광도의 감소율 모두 감소하며, TOC 제거율이 흡광도 감소율에 비해 상대적으로 더 크게 나타났다.

  • PDF

Photocatalysis of Low Concentration of Gaseous-Phase Benzene Using Visible-Light Irradiated N-doped and S-doped Titanium Dioxide

  • Jo, Wan-Kuen;Kim, Jong-Tae
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.171-176
    • /
    • 2008
  • Studies on visible-light-driven photocatalysis of air pollutants at indoor air quality (IAQ) levels have been limited. Current study investigated visible-light derived photocatalysis with N-doped and S-doped titanium dioxide ($TiO_2$) for the control of benzene at indoor levels. Two preparation processes were employed for each of the two types of photocatalyst: urea-Degussa P-25 $TiO_2$ and titania-colloid methods for the N-doped $TiO_2$; and titanium isopropoxid- and tetraisopropoxide-thiourea methods for the S-doped $TiO_2$. Furthermore, two coating methods (EDTA- and acetylacetone-dissolving methods) were tested for both the N-doped and S-doped $TiO_2$. The two coating methods exhibited different photocatalytic degradation efficiency for the N-doped photocatalysts, whereas they did not exhibit any difference for the S-doped photocatalysts. In addition, the two doping processes showed different photocatalytic degradation efficiency for both the S-doped and N-doped photocatalysts. For both the N-doped and S-doped $TiO_2$, the photocatalytic oxidation (PCO) efficiency increased as the hydraulic diameter (HD) decreased. The degradation efficiency determined via a PCO system with visible-light induced $TiO_2$ was lower than that with UV-light induced unmodified $TiO_2$, which was obtained from previous studies. Nevertheless, it is noteworthy that for the photocatalytic annular reactor with the HD of 0.5 cm, PCO efficiency increased up to 52% for the N-doped $TiO_2$ and 60% for the S-doped $TiO_2$. Consequently, when combined with the advantage of visible light use over UV light use, it is suggested that with appropriate HD conditions, the visible-light-assisted photocatalytic systems can also become an important tool for improving IAQ.

Characterization of CNT/TiO2 Electrode Prepared Through Impregnation with TNB and Their Photoelectrocatalytic Properties

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Environmental Engineering Research
    • /
    • 제14권1호
    • /
    • pp.32-40
    • /
    • 2009
  • In this study, we have prepared three kinds of carbon nanometer tube $CNT/TiO_{2}$ electrodes through impregnation with different concentration titanium n-butoxide (TNB) solution. The prepared electrodes were characterized with surface properties, structural crystallinity, elemental identification and photoelectrocatalytic activity. The $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine CNT. This indicated the blocking of micropores on the surface of CNT, which was further supported by observation via SEM. XRD results showed patterns for the composites and a typical single and clear anatase crystal structure. The main elements such as C, O and Ti were existed for all samples from the EDX data. The catalytic efficiency of the developed electrode was evaluated by the photoelectrodegradation of methylene blue (MB). The positive potential applied in photoelectrocatalytic (PEC) oxidation was studied. It was found that photoelectrocatalytic (PEC) decomposition of MB solution could be attributed to combination effects between $TiO_2$ photocatalytic and CNT electro-assisted. Through the comparison between photocatalytic (PC) oxidation and photoelectrocatalytic (PEC) oxidation, it was found that the PEC oxidation efficiency for MB is higher than that of PC oxidation.

$TiO_2$의 광촉매 효율성에 관한 연구 (Study on the Photocatalytic Efficiencies of $TiO_2$)

  • 이종호;오한준;장재명;지충수
    • 분석과학
    • /
    • 제14권1호
    • /
    • pp.15-20
    • /
    • 2001
  • 광촉매 특성을 지닌 $TiO_2$ 피막을 인가 전압 180 V에서 양극산화법을 이용하여 제조하고, 산화조건에 따른 구조적 차이에 대하여 조사하였다. 황산 및 황산+과산화수소 용액의 경우 $TiO_2$의 구조가 rutile과 anatase형이 혼합된 형태를 지녔으나, 황산+인산 및 황산+인산+과산화수소 혼합용액의 경우에는 대부분 anatase형의 $TiO_2$가 제조되었음을 알 수 있었다. 양극산화법에 의해 제조된 $TiO_2$는 모두 광촉매 특성율을 나타냈으며, 아닐린 블루 분해 반응의 경우 모든 산화 조건에서 반응차수가 1로 나타났으며 속도상수값이 거의 유사함을 알 수 있었다.

  • PDF

TiO2/UV-A 시스템을 이용한 Cu(II)-EDTA의 광촉매 산화반응에서 TiO2 재사용 및 회수 (TiO2 Reuse and Recovery from the Photocatalytic Oxidation of Cu(II)-EDTA using TiO2/UV-A System)

  • 이승목
    • 한국물환경학회지
    • /
    • 제21권1호
    • /
    • pp.84-91
    • /
    • 2005
  • $TiO_2-catalyst$ suspensions work efficiently in Photocatalytic oxidation (PCO) for wastewater treatment. Nevertheless, once photocatalysis is completed, separation of the catalyst from solution becomes the main problem. The PCO of Cu(II)-EDTA was studied to determine the reusability of the titanium dioxide catalyst. Aqueous solutions of $10^{-4}M$ Cu(II)-EDTA were treated using illuminated $TiO_2$ particles at pH 6 in a circulating reactor. $TiO_2$ was reused in PCO system for treatment of Cu(II)-EDTA comparing two procedures: reuse of water and $TiO_2$ and reuse of the entire suspension after PCO of Cu(II)-EDTA. The results are as follows; (i) Photocatalytic efficiency worsens with successive runs when catalyst and water are reused without separation and filtration, whereas, when $TiO_2$ is separated from water, the reused $TiO_2$ is not deactivated. (ii) The $TiO_2$ mean recovery (%) with reused $TiO_2$ was 86.4%(1.73g/L). Although the mean initial degradation rate of Cu(II)-EDTA and Cu(II) was lower than that using fresh $TiO_2$, there was no significant change in the rate during the course of the three-trial experiment. It is suggested that Cu(II)-EDTA could be effectively treated using an recycling procedure of PCO and catalyst recovery. (iii) However, without $TiO_2$ separation, the loss of efficiency of the PCO in the use of water and $TiO_2$ due to Cu(II), DOC remained from previous degradation and Cu(II)-EDTA added to the same suspension was observed after 2 trials, and resulted in the inhibition of the Cu(II)-EDTA, Cu(II) and DOC destruction.