• Title/Summary/Keyword: Photocatalytic

Search Result 1,091, Processing Time 0.03 seconds

Photocatalytic activity of $TiO_2$ on nano-diamond powder prepared by Atomic Layer Deposition

  • Kim, Kwang-Dae;Dey, Nilay Kumar;Seo, Hyun-Ook;Kim, Dong-Wun;Nam, Jong-Won;Sim, Chae-Won;Jeong, Myung-Geun;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.425-425
    • /
    • 2011
  • The photocatalytic decomposition of toluene gas was investigated with $TiO_2$ on nano-diamond powder (NDP) under UV irradiation. Atomic layer deposition (ALD) was used for the growth of $TiO_2$ on the NDP. The structure and surface properties of catalysts were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The photocatalytic activity for the toluene decomposition was evaluated by measuring the concentration change of toluene and $CO_2$ gas with gas chromatography (GC)-flame ionization detector (FID) system. The photocatalytic activities of $TiO_2$/NDP catalysts were compared with that of P-25. The rate of initial photocatalytic decomposition of toluene for the $TiO_2$/NDP catalysts was relatively lower when compared to P-25. The photocatalytic activity of P-25 was rapidly decreased with time, whereas, the deactivation of $TiO_2$/NDP catalysts was less pronounced. Therefore, as the reaction time increased, the photocatalytic activity of $TiO_2$/NDP catalysts became higher than that of P-25. The intermediates such as benzaldehyde or benzoic acid, etc were more easily adhered to the active site on the P-25 surface during reaction, resulting in easier deactivation of P-25. These results could be confirmed using FT-IR spectroscopy. We suggest that the NDP used as substrate can reduce the deactivation of $TiO_2$ on the surface.

  • PDF

Surface Modification Reaction of Photocatalytic Titanium Dioxide with Triethoxysilane for Improving Dispersibility

  • Lee, Myung-Jin;Kim, Ji-Ho;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1275-1279
    • /
    • 2010
  • We have carried out the surface modification of photocatalytic $TiO_2$ with triethoxysilane through dehydrogenation reaction and characterized the modified photocatalyst by spectroscopic methods, such as FT-IR, solid-state $^{29}Si$ MAS NMR, XPS, and XRF, etc. We also examined photocatalytic activity of the immobilized photocatalytic titanium dioxide with triethoxysilane by decolorization reaction of dyes such as cong red and methylene blue under visible light. Dispersion test showed that the photocatalytic titanium dioxide immobilized with triethoxysilane group has kept higher dispersibility than titanium dioxide itself. No appreciable precipitation takes place even after standing for 24 h in the 4:6 mixture ratio of ethanol and water.

Quantitative Photocatalytic Activity under Visible Light with Mn-ACF/TiO2

  • Ye, Shu;Kim, Hyun-il;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.343-348
    • /
    • 2016
  • Manganese and $TiO_2$ grown on Activated Carbon Fiber (ACF) was synthesized by hydrothermal method. The prepared composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX). The catalytic behavior was investigated through the decomposition of methylene blue (MB) and methyl orange (MO) as standard dyes under visible light. The degradation performance of the degraded standard dye solutions was determined by UV-Vis spectrophotometry. This enhanced photocatalytic activity arises from the positive synergetic effect among the Mn, $TiO_2$ and ACF in this heterogeneous photocatalyst. The process contributes to the release of abundant photocatalytic sites of Mn and $TiO_2$ and improves the photocatalytic efficiency. The excellent adsorption and photocatalytic effect with the explanation of the synergetic mechanism are very useful not only for fundamental research but also for potential practical applications.

Photocatalytic Reactivity of Titanium Dioxide in the Removal of Benzene from Air (공기중의 벤젠제거에 대한 산화티타늄 광촉매 반응특성)

  • 박달근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.389-398
    • /
    • 2000
  • Photocatalytic removal of benzene from air was examined using titanium dioxide photocatalyst films prepared on soda lime glass(50$\times$50$\times$2 mm) by spin coating and chemical vapor deposition. For the measurement of photocatalytic reactivity titanium dioxide coated glass was placed into a batch reactor and concentration of benzene in the reactor was set to abuot 100 ppm, and then illuminated with UV. It was found that catalytic reactivity of titanium dioxide films increased with the increase of titanium dioxide film thickness and then level off beyond a certain film thickness. UV absorption by the films showed the similar trend. The formation of stoichiometric amount of carbon dioxide was confirmed by measurement of carbon dioxide concentration in the reactor. In general spin coated films revealed better photocatalytic reactivity than chemically deposited one within the experimental ranges covered in this study. Morphology and crystal structure of prepared films were investigated by XRD and SEM and they showed significant difference between spin coated films and CVD films. Highest quantum efficiency of prepared titanium dioxide photocatalyst was close to 50%.

  • PDF

Gaseous by-products from the TiO2 Photocatalytic Oxidation of Benzene

  • Han, Sang-Wook;Lee, Jin-Hong;Kim, Jin-Seog;Oh, Sang-Hyub;Park, Young-Kwon;Kim, Hyun-Ook
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.14-18
    • /
    • 2008
  • Photocatalytic oxidations of benzene gas using the closed system (batch reactor) were induced to determine its by-products and investigate the effect of humidity and oxygen concentration on their generation. The study was able to identify 11 gaseous by-products: 2-methylpropene, acetaldehyde, acetone, pentane, methylcyclobutane, methylcyclopentane, cyclohexane, 2,3-dimethylbutane, 2-methylpentane, 3-methylpentane, and hexane. All the by-products were saturated hydrocarbons, which are less toxic than benzene and were probably formed through hydrogenation reaction on the photocatalytic surface. The photocatalytic oxidation of benzene under higher humidity produced less by-products. However, the amount of acetone released increased with higher humidity and oxygen concentration.

Synthesis and characterization of visible light active photocatalytic $TiO_2$

  • Kim, Duk-Su;Park, Kyu-Sung;Kim, Il-Doo;Kim, Ho-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1116-1120
    • /
    • 2002
  • Using thermal hydrolysis and hydrothermal treatment, photocatalytic $TiO_2$ powders were synthesized. During the synthesis, the addition of other transition metals such as iron, copper, etc., affected the photocatalytic capability of synthesized powders, and enabled the activation by visible light. To enhance photocatalytic capacity of gas phase decomposition, the rate-determining adsorption rate of pollutant gases were improved via surface modification of $TiO_2$ powders. The surface modifiers were implanted using mechanochemical synthesis of dopants and photocatalytic powders.

  • PDF

Self-Cleaning and Photocatalytic Performance of TiO2 Coating Films Prepared by Peroxo Titanic Acid

  • Yadav, Hemraj M.;Kim, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.577-582
    • /
    • 2017
  • Self-cleaning and photocatalytic $TiO_2$ thin films were prepared by a facile sol-gel method followed by spin coating using peroxo titanic acid as a precursor. The as-prepared thin films were heated at low temperature($110^{\circ}C$) and high temperature ($400^{\circ}C$). Thin films were characterized by X-ray diffraction(XRD), Field-emission scanning electron microscopy(FESEM), UV-Visible spectroscopy and water contact angle measurement. XRD analysis confirms the low crystallinity of thin films prepared at low temperature, while crystalline anatase phase was found the for high temperature thin film. The photocatalytic activity of thin films was studied by the photocatalytic degradation of methylene blue dye solution. Self-cleaning and photocatalytic performance of both low and high temperature thin films were compared.

Photocatalytic Degradation of Brilliant Blue FCF with TiO2 Suspension (TiO2현탁액에 의한 Brilliant Blue FCF의 광촉매 분해)

  • Jeong, Gap Seop;Choe, Su Il
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.599-603
    • /
    • 2004
  • In a batch reactor, the characteristics of photocatalytic degradation of brilliant blue FCF in titanium dioxide suspension was studied under the irradiation of ultra-violet ray. Photocatalytic degradation in anatase type of TiO$_2$ was more effective than in rutile type of $TiO_2$ below the dosage of 5g. The degradation rate was slightly increased with decreasing initial pH of brilliant blue FCF aqueous solution, but rapidly increased with the addition of oxidant. Potassium bromate acted as more effective oxidant than ammonium persulfate. The photocatalytic degradation rate of brilliant blue FCF was pseudo-first order with rate constants of 0.012, 0.006 and $0.003min^{-1}$ at initial pH 3.1, 5.2 and 7.1 of brilliant blue FCF solution, respectively.

Enhancement of Photo-reduction of Water by Exploiting Zn Doped Mesoporous $TiO_2$

  • Ali, Zahid;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.588-588
    • /
    • 2012
  • Zn-doped $TiO_2$ mesoporous microspheres with high photocatalytic activity were synthesized via combined sol-gel and solvothermal methods for photocatalytic water splitting. It is found that the photocatalytic water splitting and photocatalytic degradation activity can be enhanced by doping an appropriate amount of Zn. Our results reveal that Zn doping inhibits the recombination of photo-generated charge carriers of $TiO_2$ and improves the probability of photo-generated charge carrier separation and hence the photocatalytic activity of $TiO_2$.

  • PDF

Photocatalytic Degradation Characteristics of Organic Compound by Boron-doped TiO2 Catalysts

  • Nam, Chang-Mo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.649-656
    • /
    • 2010
  • Boron-doped $TiO_2$ photocatalysts were synthesized by a modified sol-gel method and their photocatalytic activities were performed and compared with those of pure synthetic and commercial $TiO_2$ catalysts under UV or visible light conditions. Pure $TiO_2$ itself exhibited very negligible photocatalytic performance under visible light conditions in the aspects of toluene decomposition reactions, although significant decomposition potential was observed as expected with UV light conditions. However, boron doping over $TiO_2$ significantly improved photocatalytic activity particularly under visible conditions, where over 95% degradation of toluene was achieved with 1wt% $B-TiO_2$ within 2 hrs. All the decomposition reactions seemed to follow pseudo first-order kinetics. The effects of boron-doping and its characteristics are further discussed through the kinetic studies and comparison of results.