• 제목/요약/키워드: Photocatalytic

Search Result 1,101, Processing Time 0.04 seconds

Effects of transition metal-doping on the properties of ZnO nanoparticles and the photocatalytic degradation of methylene blue (전이금속 도핑이 ZnO 나노분말의 특성 및 메틸렌블루 광촉매 분해 특성에 미치는 영향)

  • Chang, Han Kwon;Oh, Kyung Jun;Jang, Hee Dong;Cho, Kuk;Kim, Dong-Jin;Choi, Jin Hoon
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • Transition metals such as V, Fe, and Ni were used to synthesize doped zinc oxide nanoparticles from mixed liquid precursors by using the flame spray pyrolysis (FSP). The effects of dopants on the powder properties such as morphology, specific surface area, crystal structure, and light adsorption were analyzed by TEM, BET, XRD, and UV-Vis diffuse reflection spectrum (DRS), respectively. The results showed that hexagonal wurtzite structured ZnO:M (M = V, Fe, Ni) nanoparticles were successfully synthesized by the FSP. The transition metal-doping resulted in the decrease in its particle size and crystallite size. The UV-vis absorption spectra of ZnO:M nanoparticles were also red-shifted. ZnO:V showed the highest MB degradation of 99.4% under the UV irradiation after 3 hrs.

Protection of STS304 Steel with Photo-Functional Material $TiO_2$ Coating (광기능성 재료 $TiO_2$ 피막에 의한 STS304강의 방식)

  • Nam, Ki-Woo;Lee, Sung-Yeon;Ahn, Seok-Hwan;Kim, Jong-Soon;Park, In-Duck
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.307-311
    • /
    • 2002
  • This study was investigated the photoelectrochemical behavior of STS304 steel with $TiO_2$ thin films coating, applied by sol-gel method, for the purpose of cathodic photoprotection of the steel corrosion. One time $TiO_2$-coated STS304 steel adopted two kinds of $TiO_2$ sol solution has the most dominant photopotential abilities, which was -200mV vs. SCE and -500mV vs. SCE under illumination with 40W fluorescent lamp, respectively. That was more negative than the corrosion potential of the bare metal(-150 mV). The bleaching of TCE was confirmed on $TiO_2$-coated STS304 under UV-illumination with 20 W Black-light. This Study was concluded that $TiO_2$-coated STS304 exhibited both a cathodic photoprotection effect against corrosion and photocatalytic self-cleaning effect.

  • PDF

Synthesis of Hydrous $TiO_2$ Powder by Dropping Precipitant Method and Photocatalytic Properties (침전제 적하법을 이용한 $TiO_2$ 분말 제조 및 광촉매 특성)

  • 이병민;신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.308-313
    • /
    • 2000
  • Hydrous titanium oxide particles with anatase phase were prepared from 0.05 mol TiCl4 solution using NH4HCO3 as precipitant by the droopping precipitant method. The sequential change of pH is completed by a sudden and steep increase in a pH value of the range of 6~7 to which the concentration of adsorbed OH- and H+ ions on TiO2 surface is equal. Rutile phase started precipitating with anatase phase as an increase of reaction temperature above 6$0^{\circ}C$ in aqueous 0.05mol TiCl4 solution and its specific surface area was found to decrease from 452 $m^2$/g($25^{\circ}C$) to 164$m^2$/g(8$0^{\circ}C$). Specific surface area decreased rapidly when anatase powders precipitated at 4$0^{\circ}C$ were heat-treated at temperature higher 40$0^{\circ}C$. FT-IR result confirmed that it was due to the decrease of OH species within hydrous titanium oxides. The loss of ethanol after illumination of the powder heated at $600^{\circ}C$ and $700^{\circ}C$ for 4 h was 66 and 68.8%, respectively.

  • PDF

Characterization of Metal(Cu, Zn)-Carbon/TiO2 Composites Derived from Phenol Resin and their Photocataytic Effects

  • Oh, Won-Chun;Bae, Jang-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.196-203
    • /
    • 2008
  • Metal-carbon/$TiO_2$ composite photocatalysts were thermally synthesized through the mixing of anatase to metal(Cu, Zn) containing phenol resin in an ethanol solvent coagulation method. The BET surface area increases, with the increase depending on the amount of metal salt used. From SEM images, metal components and carbon derived from phenol resin that contains metal was homogeneously distributed to composite particles with porosity. XRD patterns revealed that metal and titanium dioxide phase can be identified for metal-carbon/$TiO_2$ composites, however, the diffraction peaks of carbon were not observed due to the low carbon content on the $TiO_2$ surfaces and due to the low crystallinity of the amorphous carbon. The results of a chemical elemental analysis of the metal-carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for C, O, treated metal components and Ti metal compared to that of any other elements. According to photocatalytic results, the MB degradation can be attributed to the three types of synergetic effect: photocatalysis, adsorptivity and electron transfer, according to the light absorption between the supporter $TiO_2$, metal species, and carbon layers.

A study on the Band Gap Energy Measurement of Liquid Phase Photocatalytic Sols (액상 광촉매 졸의 밴드갭 에너지 측정 연구)

  • Yoon, Cho-Rong;Qamar, Mohamad;Oh, Hyo-Jin;Hwang, Jong-Seon;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.39-42
    • /
    • 2006
  • Titania sols or powders were are very promising materials for environment as photocatalyst. The band gap energy of $TiO_2$ has been known to be 2.8 to 3.2 eV. But the measuring system of its band gap is usually depend on absorption properties. Thus, in this study, absorption properties of $TiO_2$ sols prepared by hydrothermal process were researched with the effect of various particle sizes and concentrations. The mean particle size in $TiO_2$ sols increased as 15 nm to 60 nm, absorption graph measured by UV-Vis spectrometer shows to move red-shift. When dilute solution added with $2^n$ in $TiO_2$, the band gap energy increases as linear function.

  • PDF

Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures

  • Zou, C.W.;Gao, W.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This is an overview paper reporting our most recent work on processing and microstructure of nano-structured oxides and their photoluminescence and photo-catalysis properties. Zinc oxide and related transition metal oxides such as vanadium pentoxide and titanium dioxide were produced by a combination of magnetron sputtering, hydrothermal growth and atmosphere controlled heat treatment. Special morphology and microstructure were created including nanorods arrays, core-brushes, nano-lollipops and multilayers with very large surface area. These structures showed special properties such as much enhanced photoluminescence and chemical reactivity. The photo-catalytic properties have also been promoted significantly. It is believed that two factors contributed to the high reactivity: the large surface area and the interaction between different oxides. The transition metal oxides with different band gaps have much enhanced photoluminescence under laser stimulation. Use of these complex oxide structures as electrodes can also improve the energy conversion efficiency of solar cells. The mixed oxide complex may provide a promising way to high-efficiency photo emitting materials and photo-catalysts.

Hydrogen Production by the Photocatalystic Effects in the Microwave Water Plasma

  • Jang, Soo-Ouk;Kim, Dae-Woon;Koo, Min;Yoo, Hyun-Jong;Lee, Bong-Ju;Kwon, Seung-Ku;Jung, Yong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.284-284
    • /
    • 2010
  • Currently, hydrogen has been produced by Steam Reforming or partial oxidation reforming processes mainly from oil, coal, and natural gas and results in the production of $CO_2$. However, these are influenced greatly on the green house effect of the earth. so it is important to find the new way to produce hydrogen utilizing water without producing any environmentally harmful by-products. In our research, we use microwave water plasma and photocatalyst to improve dissociation rate of water. At low pressure plasma, electron have high energy but density is low, so temperature of reactor is low. This may cause of recombination in the generated hydrogen and oxygen from splitting water. If it want to high dissociation rate of water, it is necessary to control of recombination of the hydrogen and oxygen using photocatalyst. We utilize the photocatalytic material($TiO_2$, ZnO) coated plasma reactor to use UV in the plasma. The quantity of hydrogen generated was measured by a Residual Gas Analyzer.

  • PDF

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

Unexpected Chemical and Thermal Stability of Surface Oxynitride of Anatase TiO2 Nanocrystals Prepared in the Afterglow of N2 Plasma

  • Jeon, Byungwook;Kim, Ansoon;Kim, Yu Kwon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.62-65
    • /
    • 2017
  • Passivation of surface defects by the formation of chemically inert structure at the surface of $TiO_2$ nanocrystals can be potentially useful in enhancing their photocatalytic activity. In this regard, we have studied the surface chemical states of $TiO_2$ surfaces prepared by a treatment in the afterglow of $N_2$ microwave plasma using X-ray photoemission spectroscopy (XPS). We find that nitrogen is incorporated into the surface after the treatment up to a few atomic percent. Interestingly, the surface oxynitride layer is found to be chemically stable when it's in contact with water at room temperature (RT). The surface nitrogen species were also found to be thermally stable upon annealing up to $150^{\circ}C$ in the atmospheric pressure. Thus, we conclude that the treatment of oxide materials such as $TiO_2$ in the afterglow of $N_2$ plasma can be effective way to passivate the surface with nitrogen species.

Photocatalytic Degradation of Organic Compounds over $xTiO_2$-$ySiO_2$ Powders Prepared by Sol-Gel Method (졸-겔법으로 제조된 $xTiO_2$-$ySiO_2$ 분말에 의한 유기물의 광분해)

  • Yang, Chun-Hoe;Lee, Bong-Cheol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.130-136
    • /
    • 2008
  • $xTiO_2$-$ySiO_2$ system photocatalysts were developed by sol-gel method based on the change of production parameters, and their structure of crystallization and the specific surface area were measured. Considering the efficiency of the ethanol and phenol degradation using the catalyst, the conclusions were obtained as follows: By means of X-ray analysis of $xTiO_2$-$ySiO_2$ powder that is obtained from Titanium and Silicon alkoxide by sol-gel process, it is shown that crystal structure of anatase type is a dominating structure and, on the other hand, the structure of rutile also partly exists. The increase of $SiO_2$ contents causes the decrease of the degree of crystallization of the gel, whereas the specific surface area preferentially increases. It is shown that more than 90% of ethanol and phenol are degraded when reaction time is about three and an hours, and the maximum degradation rate of ethanol and phenol is shown in $60TiO_2$-$40SiO_2$ catalyst.