• Title/Summary/Keyword: Phosphotyrosine Phosphatase

Search Result 15, Processing Time 0.056 seconds

Phosphotyrosine Protein Phosphatase Activity Is Inversely Related to Metastatic Ability in Rat Prostatic Tumor Cell Subclonal Lines

  • Lee, Han-Soo
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.417-422
    • /
    • 1996
  • In clonal sublines with different metastatic ability derived from Dunning rat prostate tumor, phosphoamino acid levels of cellular proteins were determined. Cell lines with high metastatic ability exhibited 5-fold higher phosphotyrosine level than did cell lines with low metastatic ability, while the contents of phosphoserine and phosphothreonine were similar among cell lines examined, All cell lines showed similar activities of protein tyrosine kinases as well as overall protein kinases. Phosphotyrosine protein phosphatase (PTPP) activities of the cells with high metastatic ability were very low, compared to those of the cells with low metastatic ability, suggesting that the different phosphotyrosine levels among the cell lines were due to the difference in PTPP activities rather than protein tyrosine kinase activities. Cellular activities of prostatic acid phosphatase (PAcP), which has been reported to possess phosphotyrosine protein phosphatase activity, were shown to be inversely related to the phosphotyrosine levels and metastatic abilities of the prostate tumor cells, These results suggest that cellular PAcP activity, regulating phosphotyrosine levels of cellular proteins, is closely connected with the metastatic process in prostate tumor cells and can be utilized as a good biochemical marker for the diagnosis of metastasis of prostate tumor.

  • PDF

Purification of YPTP1 with Immobilized Phosphonomethylphenylalanine-Containing Peptide as an Affinity Ligand

  • Han, Jun-Pil;Kwon, Mi-Yun;Cho, Hyeong-Jin
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.135-138
    • /
    • 1998
  • A previous study on a yeast protein tyrosine phosphatase, YPTP1, using synthetic phosphotyrosine-containing peptides with various sequences as substrates revealed that DADEpYDA exhibits high affinity ($K_m=4{\mu}M$) toward the enzyme. A modified version of this peptide, GDADEpmFDA, immobilized on a resin, was used in this study as an affinity ligand for the purification of YPTP1. Phosphonomethyl-phenylalanine (pmF) was used as a nonhydrolyzable analog of the phosphotyrosine (pY) residue, with properties similar to pY. A protected form of pmF, $Fmoc-pmF(^{t}Bu)_{2}-OH$, was chemically synthesized and introduced during solid-phase peptide sythesis. YPTP1 was onrexpressed in an E. coli strain carrying a plasmid pT7-7-ptpl. Affinity chromatography of the crude lysate afforded PTPI (39 kDa) of about 50% purity.

  • PDF

The EphA8 Receptor Phosphorylates and Activates Low Molecular Weight Phosphotyrosine Protein Phosphatase in Vitro

  • Park, Soo-Chul
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.288-293
    • /
    • 2003
  • Low molecular weight phosphotyrosine protein phosphatase (LMW-PTP) has been implicated in modulating the EphB1-mediated signaling pathway. In this study, we demonstrated that the EphA8 receptor phosphorylates LMW-PTP in vitro. In addition, we discovered that mixing these two proteins leads to EphA8 dephosphorylation in the absence of phosphatase inhibitors. Finally, we demonstrated that LMW-PTP, modified by the EphA8 autokinase activity, possesses enhanced catalytic activity in vitro. These results suggest that LMW-PTP may also participate in a feedback-control mechanism of the EphA8 receptor autokinase activity in vivo.

The Molecular Study of Phosphotyrosine Protein Phosphatase (PtpA) from Streptomyces coelicolor A(3)2 (방선균이 생산하는 인산화타이로신 단백질 포스파타아제의 분자생물학적 연구)

  • 최학선;신용국;김춘성;김시욱
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 2002
  • The cloning and expression of Phosphotyrosine Protein Phosphatase into E. coli provides important tools of understanding of its functions and signal transduction mechanisms. The abundant soluble protein of the Phosphotyrosine Protein Phosphatase A (PtpA) and the active site mutant PtpA(C9S) were produced using the expression vector pET26 in E. coli and pIJ6021 with the thiostrepton in S. lividans. The enzyme activity of both proteins extracted by Ni-NTA column had same results from the expression vector pET26 and pIJ6021. The enzyme activity of phosphatase was found in the protein of PtpA, but not in that of C9S. The western blot detected by penta His-tag antibody resulted in the inducer, thiostrepton was not a good trigger to induce a large amount of PtpA protein. The overexpression of both proteins had no significantly different effect on the A factor cascade related to the secondary metabolite and mycelium formation between PtpA and C9S. However, overproduction of PtpA protein using pIJ6021 in S. lividans brought about a dramatic decrease in the amount of phosphotyrosine proteins (p200, p90, and p65), but no significantly phenotypic variation in S. lividans. This indicates that PtpA has an important proteome role in signal transduction mechanism of producing massive amount of phosphotyrosine protein in Streptomyces sp.

Inorganic Phosphate Has the Inhibitory Effect on Phosphotyrosyl Phosphatase Activity of Alkaline Phosphatase in Rabbit Plasma (인산에 의한 토끼 혈장 Alkaline Phosphatase의 Phosphotyrosyl Phosphatase 활성 저해)

  • Lee, Kyung Tae;Seo, Soong Hoon;Kim, Dong Hyun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.9 no.1
    • /
    • pp.62-65
    • /
    • 1999
  • Inorganic phosphate (Pi) in rabbit plasma was found to block completely phosphotyrosine phosphatase (PTPase) activity without affecting the alkaline phosphatase (ALPase) activity. Our results provided that (1) PTPase activity and inhibitor are separated after G-25 gel-filtration. (2) This inhibitor is heat stable and trypsin-resistant and it can be removed by dialysis using 3 Kd cut-off tubing. (3) The elution pattern of the inhibitor is identical to that of Pi, and by performing a seperate run with inorganic phosphate. (4) The PTPase activity was recovered following an incubation with $CaCl_2$ (10 mM).

  • PDF

Substrate Specificity of Alkaline Phosphatase (Alkaline phosphatase의 기질 특이성)

  • ;;E. Waelkens;W. Merlevede
    • YAKHAK HOEJI
    • /
    • v.37 no.6
    • /
    • pp.571-576
    • /
    • 1993
  • The substrate specificity of the purified rabbit plasma alkaline phosphatase (ALPase) was determined towards a extended range of potential substrates including relatively simple phosphate derivatives as p-NPP and indolyl phosphate, and several synthetic peptides and phosphoproteins. These results further estabilish the broad substrate specificity of these circulating enzymes. Interestingly, the plasma ALPase preferentially dephosphorylates Thr over Ser residues, as demonstrated with a series of synthetic peptides. The latter result is in contradiction to the behaviour of the tissue ALPase, which is thought to the ultimate source of plasma ALPase, and open therefore new perspectives with respective to the origin and "solubilisation" processes of these enzymes. Dephsphrylation of protein substrates by endogenous and isolated plasma ALPases indicates that ALPase probably displays protein phosphatase activity in vivo.

  • PDF

Inhibition of tyrosine phosphatases blocks plasma membrane blebbing during Fas- induced apoptosis of Jurkat T cells without affecting the cytotoxicity of Fas-ligation

  • Cho, Jun-Young;Kim, Kwang-Dong;Kho, Chang-Won;Park, Sung-Goo;Chung, Kyeong-Soo;Lim, Jong-Seok
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.135.2-135.2
    • /
    • 2003
  • Plasma membrane blebs are observed in many types of apoptotic cells, but their processes of formation remain to be clarified. In the present study, we investigated whether there is a relationship between change of intracellular phosphotyrosine levels and biochemical apoptotic events in Jurkat T cells undergoing apoptosis by agonistic anti-Fas antibody. When Jurkat cells were treated with Fas-antibody in the presence or absence of pretreatment with sodium orthovanadate ($Na_3${VO}_4$), a phosphotyrosine phosphatase (PTPase) inhibitor, membrane blebs disappeared in orthovanadate-treated cells. (omitted)

  • PDF

TK-PTP, Protein Tyrosine Phosphatase from Hyperthermophilic Archaeon Thermococcus kadakaraensis KODI : Enzymatic Characteristics and Isolation of its Substrate Proteins

  • Jeon, Sung-Jong;Kim, Byung-Woo
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.135-136
    • /
    • 2001
  • The Tk-ptp gene encoding a protein tyrosine phosphatase (PTPase) from the hyperthermophilic archaeon Thermococcus kodakaraensis KODI was cloned and sequenced. Sequence analysis indicated that Tk-ptp encoded a protein consisting 147 amino acid residues (16,953 Da). The wild type and the mutants were expressed in Escherichia coli cells as His-tagged fusion proteins and examined for enzyme characteristics. Tk-PTP possessed two unique features that were not found in eucaryal and bacterial counterparts. First, the recombinant Tk-PTP showed the phosphatase activity not only for the phosphotyrosine but also phosphoserine. Second, the conserved Asp (Asp-63), which was considered to be a critical residue, was not involved in catalysis. In order to know a specific substrate for Tk-PTP, C93S mutant was used to trap substrate protein. Proteins of 120, 60 and 53 kDa were isolated specifically from KODI cell lysates by affinity chromatography with Tk-PTP-C93S. It is suggested that these proteins are tyrosine-phosphorylated substrates of Tk-PTP.

  • PDF

Structural and Biochemical Characterization of the Two Drosophila Low Molecular Weight-Protein Tyrosine Phosphatases DARP and Primo-1

  • Lee, Hye Seon;Mo, Yeajin;Shin, Ho-Chul;Kim, Seung Jun;Ku, Bonsu
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1035-1045
    • /
    • 2020
  • The Drosophila genome contains four low molecular weight-protein tyrosine phosphatase (LMW-PTP) members: Primo-1, Primo-2, CG14297, and CG31469. The lack of intensive biochemical analysis has limited our understanding of these proteins. Primo-1 and CG31469 were previously classified as pseudophosphatases, but CG31469 was also suggested to be a putative protein arginine phosphatase. Herein, we present the crystal structures of CG31469 and Primo-1, which are the first Drosophila LMW-PTP structures. Structural analysis showed that the two proteins adopt the typical LMW-PTP fold and have a canonically arranged P-loop. Intriguingly, while Primo-1 is presumed to be a canonical LMW-PTP, CG31469 is unique as it contains a threonine residue at the fifth position of the P-loop motif instead of highly conserved isoleucine and a characteristically narrow active site pocket, which should facilitate the accommodation of phosphoarginine. Subsequent biochemical analysis revealed that Primo-1 and CG31469 are enzymatically active on phosphotyrosine and phosphoarginine, respectively, refuting their classification as pseudophosphatases. Collectively, we provide structural and biochemical data on two Drosophila proteins: Primo-1, the canonical LMW-PTP protein, and CG31469, the first investigated eukaryotic protein arginine phosphatase. We named CG31469 as DARP, which stands for Drosophila ARginine Phosphatase.

Key Structural Features of PigCD45RO as an Essential Regulator of T-cell Antigen Receptor Signaling (T-세포 항원 수용체 매개 신호전달 조절자로서 돼지 CD45RO 구조특성)

  • Chai, Han-Ha;Lim, Dajeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.211-226
    • /
    • 2019
  • Pig CD45, the leukocyte common antigen, is encoded by the PTPRC gene and CD45 is a T cell-type specific tyrosine phosphatase with alternative splicing of its exons. The CD45 is a coordinated regulator of T cell antigen receptor (TCR) signal transduction achieved by dephosphorylating the phosphotyrosine of its substances, including $CD3{\zeta}$ chain of TCR, Lck, Fyn, and Zap-70 kinase. A dysregulation of CD45 is associated with a multitude of immune disease and has been a target for immuno-drug discovery. To characterize its key structural features with the effects of regulating TCR signaling, this study predicted the unknown structure of pig CD45RO (the smallest isoform) and the complex structure bound to the ITAM (REEpYDV) of $CD3{\zeta}$ chain via homology modeling and docking the peptide, based on the known human CD45 structures. These features were integrated into the structural plasticity of extracellular domains and functional KNRY and PTP signature motifs (the role of a narrow entrance into ITAM binding site) of the tyrosine phosphatase domains in a cytoplasmic region from pig CD45RO. This contributes to the selective recognition of phosphotyrosine from its substrates by adjusting the structural stability and binding affinity of the complex. The characterized features of pigCD45RO can be applied in virtual screening of the T-cell specific immunomodulator.