• Title/Summary/Keyword: Phosphorus-Back Solution

Search Result 3, Processing Time 0.022 seconds

Characteristics of Biological Phosphorus Removal in the MBR (MBR 공정에서의 인 제거 특성)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.197-204
    • /
    • 2007
  • The reciprocal effects towards the enhanced biological phosphorus removal were performed for anaerobic, aerobic and anoxic phases. The batch experiments showed that the p-absorption in the anoxic phase was 50% lower than aerobic phase. The correlation coefficient between p-back-solution and p-absorption was found to be $R^2=0.557$ however, the coefficient b(b = 8.4049) was relatively higher than the other researchers results. The increase and/or acceptance of the $K^+-,\;Mg^{2+}-$ and $NH_4-N$-concentration was proportional to those of the $PO_4-P$-concentration in the batch test. The relationship between $K^+-,\;Mg^{2+}$ and $PO_4-P$ was determined. The average value of this relation-ship agreed with 0.2 mol $K^+Ion$ / mol $PO_4-P$ ion and 0.21 mol $Mg^{2+}Ion$ / moi $PO_4-P$ ion in the anaerobic phase. The absorbed ratio of $K^+$ to $Mg^{2+}$ over $PO_4-P$ was found to be 1 : 5.

The Single-Side Textured Crystalline Silicon Solar Cell Using Dielectric Coating Layer (절연막을 이용한 단면 표면조직화 결정질 실리콘 태양전지)

  • Do, Kyeom-Seon;Park, Seok-Gi;Myoung, Jae-Min;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.245-248
    • /
    • 2011
  • Many researches have been carried out to improve light absorption in the crystalline silicon solar cell fabrication. The rear reflection is applied to increase the path length of light, resulting in the light absorption enhancement and thus the efficiency improvement mainly due to increase in short circuit current. In this paper, we manufactured the silicon solar cell using the mono crystalline silicon wafers with $156{\times}156mm^2$, 0.5~3.0 ${\Omega}{\cdot}cm$ of resistivity and p-type. After saw damage removal, the dielectric film ($SiN_x$)on the back surface was deposited, followed by surface texturing in the KOH solution. It resulted in single-side texturing wafer. Then the dielectric film was removed in the HF solution. The silicon wafers were doped with phosphorus by $POCl_3$ with the sheet resistance 50 ${\Omega}/{\Box}$ and then the silicon nitride was deposited on the front surface by the PECVD with 80nm thickness. The electrodes were formed by screen-printing with Ag and Al paste for front and back surface, respectively. The reflectance and transmittance for the single-sided and double-sided textured wafers were compared. The double-sided textured wafer showed higher reflectance and lower transmittance at the long wavelength region, compared to single-sided. The completed crystalline silicon solar cells with different back surface texture showed the conversion efficiency of 17.4% for the single sided and 17.3% for the double sided. The efficiency improvement with single-sided textured solar cell resulted from reflectance increase on back surface and light absorption enhancement.

  • PDF

Characterization of Copper Toxicity Symptoms and Determination of Tissue Critical Concentration for Diagnostic Criteria in Korean Bred Strawberries (국내육성 주요 딸기 품종에서 발생하는 구리(Cu) 과잉 증상 및 영양진단을 위한 식물체 내 한계농도)

  • Choi, Jong Myung;Nam, Min Ho;Lee, Chiwon W.
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.477-483
    • /
    • 2012
  • This study was carried out to investigate the influence of copper concentrations in fertilizer solution on the growth of and nutrient uptake by domestically bred strawberries. The characterization of toxicity symptoms as well as tissue analyses based on dry weight of above ground tissue were also conducted to determine the threshold levels in plants when toxicity developed in copper. The dry weights of the above ground tissue were not significantly different among the treatments of 0.25 mM to 1.0 mM in 'Keumhyang' and 'Maehyang' strawberries and that of 0.25 mM to 3.0 mM in 'Seolhyang' strawberry. This indicates that the 'Seolhyang' strawberry is more tolerant to copper toxicity than 'Keumhyang' or 'Maehyang' strawberries. Application of copper at high concentrations resulted in severe toxicity such as death of extensive areas of leaves. The lower leaves became yellow and die rapidly as the symptoms spread up the plants. The leaf blades and petioles died back to the crown and hang on by mechanical attachment. Symptoms of copper toxicity in lower leaves developed as browning on leaf margins and in patches between leaf veins that became necrotic. The elevation of copper concentrations in fertilizer solution did not influence the tissue phosphorus, potassium, calcium, and magnesium contents based on the dry weight of the above ground tissue. The tissue copper contents increased lineally as the copper concentrations in fertilizer solution were elevated. But the tissue iron, manganese and boron contents were not influenced by the concentrations. When the concentration of copper at which growth of a plant is retarded by 10% is regarded as threshold level, the copper contents based on dry weight of above ground plant tissue should be lower than 71.4, 57.9 and 74.8 $mg{\cdot}kg^{-1}$ in 'Keumhyang', 'Maehyang' and 'Seolhyang' strawberries, respectively. The symptom characterization and established threshold level in copper toxicity would help growers to prevent the reduction of crop growth and yield in 'Seolhyang' strawberry cultivation.