• 제목/요약/키워드: Phosphorus removal efficiency

검색결과 338건 처리시간 0.029초

Al 함량이 다른 PAC를 이용한 응집 조건 별 인 제거효율 평가 (Evaluation of Phosphorus Removal Efficiency at Various Coagulation Conditions Using Polyaluminum Chloride with Different Al Contents)

  • 최정학;윤건곤;이창한
    • 한국환경과학회지
    • /
    • 제32권10호
    • /
    • pp.731-739
    • /
    • 2023
  • In this study, lab-scale phosphorus coagulation/precipitation experiments were performed using three types of polyaluminum chloride (PAC) with different Al contents (10%, 12%, and 17%). The PO4-P removal efficiencies at various operating conditions, such as initial PO4-P concentration, initial pH, and Al/P molar ratio, were evaluated, and correlations among the operating factors affecting phosphorus coagulation/precipitation with PAC were derived to optimize the process efficiency. When the initial PO4-P concentration was 0.065 and 0.161 mmol P/L under an initial pH of 8-10, the optimal PAC dose was 0.126-0.378 and 0.189-0.667 mmol Al/L, respectively. Under these conditions, the Al/P molar ratio was 2.16-6.18 and 1.28-4.30, respectively, and the PO4-P removal efficiency was in the range of 40.2-92.5%. When the Al/P molar ratio was 2 or less under an initial pH condition of 6-8, the PO4-P removal efficiency was approximately ≤40% owing to insufficient Al3+ ions. However, when the Al/P molar ratio is 3-5, the PO4-P removal efficiency improved to approximately 80-90%. Thus, the optimal Al/P molar ratio to achieve a PO4-P removal efficiency of over 90% was determined to be approximately 4 in the PO4-P coagulation/precipitation process using PAC.

탄산칼슘 담체를 이용한 폐수내의 인 제거 (Phosphorus Removal from Wastewater by CaCO3 Media)

  • 김문기;박재홍;이광현;주현종
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.515-521
    • /
    • 2009
  • In this study, the applicability of $CaCO_3$ as a seed material for crystallization reaction was tested. $CaCO_3$ was ground to lesser than 425 mesh and was made to media mixed with binder. Batch experiment was to investigate the ${PO_4}^{3-}-P$ removal efficiency of different parameters such as $CaCO_3$ dosage and binder ratio, size, type and mass of media. In addition, the effect of phosphorus removal from wastewater was tested using a lab-scaled crystallization reactor. At the results of the batch test, phosphorus removals were improved with increasing $CaCO_3$ dosage and media mass but were decreased with increasing media size. Moreover, phosphorus removals were influenced by specific surface area but media type. The average T-P and ${PO_4}^{3-}-P$ removal efficiency in a lab-scaled crystallization reactor with $CaCO_3$ media for wastewater were shown to be 60.2% and 60.3% for 18 days of operation time.

몇 가지 여재를 이용한 부영양수 내의 조류 및 인 제거효과 (The Removal of Algae and Phosphorus in Eutrophic Waters Using Various Filter Media)

  • 박채홍;박명환;최동호;이준헌;이명훈;황순진
    • 생태와환경
    • /
    • 제45권1호
    • /
    • pp.102-109
    • /
    • 2012
  • 본 연구는 자연수와 인공조류 배양수(BG-11 medium) 등 두 가지 부영양 실험수를 이용하여 네 가지의 여재(스펀지, 화산석, 활성탄, 수산화마그네슘)의 단독 및 혼합여재 적용에 따른 조류 및 인 제거효과를 조사하였다. 혼합여재는 컬럼 여과장치에 각각의 여재를 충진후, 스펀지, 화산석, 활성탄, 수산화마그네슘의 순서로 연결하여 단독으로 여과할 때와 서로 비교하였다. 또한 여재로 사용한 수산화마그네슘의 첨가량 및 입자크기를 조절하여 인 제거효과를 비교하였다. 수산화마그네슘은 두 가지 입경(2 mm 이상 및 이하) 모두에서 높은 인 제거효과를 보였으며, 반응시간 및 첨가량 증가에 따라 인 제거효과가 증가하였다. 단독여재의 적용 결과, 4가지 여재 중 활성탄은 조류 및 인 제거에 매우 효과적인 것으로 나타났다. 또한 활성탄을 이용한 단독여재와 비교하여 혼합여재를 통해 가장 높은 인 제거효율을 확인하였다. 이러한 결과를 토대로 혼합여재의 경우에는 제거효율이 높았던 활성탄과 수산화마그네슘 등의 조합 적용이 상승작용을 나타낸 것으로 사료된다.

천연 Zeolite와 산화철을 이용한 폐수 중 질소 및 인의 처리 (Removal Nitrogen and Phosphorus from Wastewater using Natural Zeolite and Iron Oxide)

  • 원성연;이상일
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.104-109
    • /
    • 2004
  • Removal of nutrients from domestic sewage or industrial wastewater is needed to protect surface waters from eutrophication. This research was carried out to remove the nitrogen (N) and phosphorus (P) from the wastewater using the iron oxide obtained from the steel industry and the natural zeolite, respectively. This research was conducted in both batch and continuous systems. The removal efficiency of the nutrients was evaluated in the batch system using the varying concentrations of zeolite and iron oxide added. The removal efficiency of N was 60% at the 8g of zeolite added. In the same condition, the removal efficiencies of N were 76% and 82% at 12g and 16g of zeolite added, respectively. Removal efficiency of P was 80% as 8g of iron oxide was added. The removal efficiency of P was correspondingly increased as the concentration of iron oxide was increased. Continuous column system was also used to evaluate the removal efficiency of N and P by the addition of zeolite and ferric oxide, respectively. Removal efficiencies of N were compared in the mixed packing, two stage, and four stage columns, respectively. The removal efficiencies (80%) of N in the separate packed columns (two and four stages) were higher than the mixed packing column (400%) after 90 hr. Whereas, the removal efficiencies of P were similar to each other in the three columns.

상향류식 혐기성조, 무산소조 및 수차호기조를 이용한 하수처리시 수리학적 체류시간의 변화와 메디아 충진이 질소 및 인 제거에 미치는 영향 (The Effects of Changing of Hydraulic Retention Time and Charging Media on the Removal of Nitrogen and Phosphorus in the Up-flow Anaerobic/Anoxic Reactor and Water-mill for Sewage Treatment)

  • 신명철;이영신
    • 한국환경보건학회지
    • /
    • 제35권1호
    • /
    • pp.64-70
    • /
    • 2009
  • The aims of this study is to examine the effects of the changes in HRT(Hydraulic Retention Time) and media charge in a water-mill, among other operation factors, on the nitrogen and phosphorus removal in order to use up-flow anaerobic reactors, anoxic reactors and water-mill aerobic reactors for sewage treatment. The extension of HRT improved the nitrogen removal efficiency, however the removal pattern was constant regardless of HRT. The removal of phosphorus was constant (80%-90%) regardless of the change in HRT. The removal rate with change in influx load varied such that at the OLR (Organic Load Rate) of 1-3 kg/d, the T-N removal efficiency was 80.7%-88.9% and the T-P removal efficiency was 82.9%-89.3% while at the NLR (Nitrogen Loading Rate) of 0.108-0.156 kg/d the removal efficiencies were 80.7-88.9% (T-N) and 82.9-89.3% (T-P). The analyses of the nitrogen and phosphorous removal characteristics with the C/N and C/P ratio showed that the mean T-N removal rate was 88% at the C/N ratio of 1.2-2.6, and that the mean T-P removal rate was 86% at the C/P ratio of 7.2-14.1. Also, the analysis of nitrogen and phosphorous removal characteristics were analyzed in relation to media charge. The comparison between with and without media charge in the water-mill showed that while the nitrogen removal efficiencies were 86-94% and 85-89% respectively, the difference of phosphorous removal efficiencies were between the two conditions was not significant, thus it suggested that the media charge has less effect on the removal efficiency of phosphorous compared to that of nitrogen.

다양한 중금속이 인 축적 미생물 (Pseudomonas sp.)의 생장과 인 제거에 대한 효과 (Effect of the Various Heavy Metals on the Growth and Phosphorus (P) Removal Capacity of the Phosphorus Accumulating Microorganism (Pseudomonas sp.))

  • 김희정;유리비;한석순;우선희;이문순;백기태;정근욱
    • 한국환경농학회지
    • /
    • 제29권2호
    • /
    • pp.189-196
    • /
    • 2010
  • The removal of phosphorus (P) in the wastewater is essential for the prevention of eutrophication in the river and stream. This study was initiated to evaluate the effect of the various heavy metals on the growth and P removal capacity of Pseudomonas sp., which was well known as phosphorus accumulating microorganism(PAO's) in the EBPR(Enhanced Biological Phosphorus Removal) process. The five heavy metals used in the study were Cu, As, Zn, Ni, and Cd. The growth rate of Pseudomonas sp. was the greatest at $25^{\circ}C$, but the removal efficiency of P was the highest at $30^{\circ}C$. The $IC_{50}$ (median Inhibition Concentration) values of Pseudomonas sp. for the Cu, As, Zn, Ni, and Cd were 2.35, 11.04, 1.80, 4.92, and 0.24 mg/L, respectively. Therefore, it appears that the sensitivity of the heavy metals to Pseudomonas sp. was in the following order: Cd> Zn> Cu> Ni> AS. Also, the P removal efficiencies by Pseudomonas sp. were correspondingly decreased as the concentrations of heavy metals were increased.

Struvite 결정화를 이용한 반도체 폐수처리 시 불소제거를 위한 최적 조건 (Optimum Condition for Fluoride Removal Prior to the Application of Struvite Crystallization in Treating Semiconductor Wastewater)

  • 안명기;우귀남;김진형;강민구;류홍덕;이상일
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.916-921
    • /
    • 2009
  • This study was aimed to both enhance the fluoride removal and to reduce the phosphorus removal in treating semiconductor wastewater using $Ca(OH)_2$ at low pH so as to facilitate struvite crystallization reaction. The struvite crystallization could be introduced after fluoride removal by retaining the phosphorus source. As the results, the method applied in this study achieved high fluoride removal efficiency (about 91%) with retardation of phosphorus removal at pH 4, compared to conventional methods where the removal of fluoride and phosphorus were done at pH 11. Therefore, the fluoride removal at low pH would contribute to the enhancement of nitrogen and phosphorus removals in a consecutive struvite crystallization reactor. Treatment of semiconductor wastewater at low pH using $Ca(OH)_2$ also had lower (about 20%) water content of precipitated sludge compared to conventional method. As the molar ratio of Ca to F increased the removal efficiencies of fluoride and phosphorus increased. Although the amount of seed dosage didn't affect the removal of fluoride and phosphorus, its increase reduced the water content of precipitated matter. Finally, considering consecutive struvite reaction, the optimum condition for the removal of fluoride and phosphorus was as follow: pH: 4, the molar ratio of Ca:F: 1:1.

연속회분식반응조를 이용한 생물학적인 인 제거 연구 (Biological Phosphorus Removal using the Sequencing Batch Reactor Process)

  • 양형재;신응배;정윤철;최훈근
    • 한국물환경학회지
    • /
    • 제16권4호
    • /
    • pp.533-539
    • /
    • 2000
  • A bench-scale reactor using SBR process was experimented with an synthetic wastewater. The main purpose of this investigation was to evaluate applicability in the field and process removal efficiencies in terms of BOD and T-P and its corresponding kinetic parameters. Removal rate of phosphorus was 77% in terms of total phosphorus. Effluent concentrations were $9.8mg/{\ell}$ BOD and $1.1mg/{\ell}$ T-P. Effluent quality was maintained consistently stable by controlling decant volume and operating cycles. The efficiency for phosphorus removal was increased due to decrease in BOD-SS loading value in the range of $0.25{\leq}$aeration time ratio${\leq}0.52$.

  • PDF

PAC를 이용한 인제거 공정에서 음이온계 고분자 첨가가 입도 분포에 미치는 영향 (Effect of Anionic Polymer on Particle Size Distribution in PAC Coagulation Process for Phosphorus Removal)

  • 김성홍;이동우;김동한;김두일
    • 한국물환경학회지
    • /
    • 제29권2호
    • /
    • pp.170-175
    • /
    • 2013
  • Achieving very low phosphorus levels in treated wastewater will require the installation of additional treatment. Phosphorus removal experiments by chemical coagulation were carried out for the effluent of wastewater treatment plant in this study. TP (total phosphorus) or phosphate were highly related to the addition of PAC (poly aluminium chloride) which is one of the inorganic coagulants. But, organic polymer did not significantly affect the phosphorus removal efficiency. Polymer affected the flocculation of particle especially particle matter less than 10 micrometer so, the number of micro particles was decreased by polymer dose. Chlorination would not affect on chemical coagulation process and TP and turbidity could be effectively removed by the co-addition of PAC and polymer.

자철광 분말을 이용한 하수처리시스템의 질소, 인 제거효율에 관한 연구 (Study on the Removal Efficiency of Nitrogen and Phosphorus in Wastewater Treatment System Using Magnetite Powder)

  • 조은영;박승민;여인설;문정식;박주영;김종철;김양섭;박찬규
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.43-47
    • /
    • 2015
  • As water quality regulations have tightened, many studies to improve wastewater treatment efficiency have been performed. In this study, magnetite powder was used to maintain a high concentration of MLSS in lab-scale wastewater treatment system. After magnetite powder injection, MLSS concentration was above 8,000 mg/L and it was 3.2 times higher than control group(2,500 mg/L). In addition, nitrogen removal efficiency and phosphorus removal efficiency comparing with the control group was increased 20.5% and 11%, respectively.