• Title/Summary/Keyword: Phosphorus crystallization process

Search Result 12, Processing Time 0.028 seconds

Treatment of shrimp processing wastewater using struvite crystallization process (Struvite 결정화 공정을 이용한 새우가공폐수처리)

  • JEONG, Byung Gon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.271-275
    • /
    • 2016
  • Recently, pollution problem in coastal water has become more serious and pollution including red tide serves as a main reason for reduction of fishes resources. Particularly, nutrients such as nitrogen and phosphorus are the most serious pollutants. Normally, biological wastewater treatment process is used in removing such nutrients. However, it is difficult to adopt the biological wastewater treatment process to a small-scale fish processing factory in case of using seawater as wash water. Thus, removing nutrients through struvite crystallization is investigated in this study for treating shrimp processing wastewater. Experiments were conducted by varying molar ratio of $Mg^{2+}:NH^4-N:PO^4-P$ from 1:1:1 to 2:1:1. It can be concluded that optimum molar ratio is 1:1:1. Struvite crystallization process is compared with chemical coagulation process using PAC and struvite crystallization process is proven as the more effective process in removing nutrients from wastewater. In view of results obtained from these experiments, struvite crystallization process is a promising method in removing nitrogen and phosphorus from wastewater; however, not so good in removing organics. Thus, struvite crystallization process is suitable as the pre-treatment process in treating shrimp processing wastewater and additional biological process is needed to remove organics.

Recovery of High Concentrated Phosphates using Powdered Converter Slag in Completely Mixed Phosphorus Crystallization Reactor (완전혼합형 정석탈인반응조에서 미분말 전로슬래그를 이용한 고농도 인의 회수)

  • Kim, Eung-Ho;Yim, Soo-Bin;Jung, Ho-Chan;Lee, Eok-Jae;Cho, Jin-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.59-65
    • /
    • 2005
  • A phosphate recovery system from artificial wastewater was developed using a completely mixed phosphorus crystallization reactor, in which powdered converter slag was used as a seeding crystal. In preliminary test, the optimal pH range for meta-stable hydroxyapatite crystallization for high phosphorus concentration was observed to be 6.0 to 7.0, which was different from the conventionally known pH range (8.0~9.5) for effective crystallization in relatively low phosphorus concentration less than 5 mg/L. The average phosphorus removal efficiency in a lab-scaled completely mixed crystallization system for artificial wastewater with about 100 mg/L of average $PO_4-P$ concentration was shown to be 60.9% for 40 days of lapsed time. XRD analysis exhibited that crystalline of hydroxyapatite formed on the surface of seed crystal, which was also observed in SEM analysis. In EDS mapping analysis, composition mole ratio (=Ca/P) of the crystalline was found to be 1.78, indicating the crystalline on the surface of seed crystal is likely to be hydroxyapatite. Particle size distribution analysis showed that average size of seed crystal increased from $28{\mu}m$ up to $50{\mu}m$, suggesting that phosphorus recycling from wastewater with high phosphorus concentration can be successfully obtained by using the phosphorus crystallization recovery system.

Phosphorus Removal from Wastewater by CaCO3 Media (탄산칼슘 담체를 이용한 폐수내의 인 제거)

  • Kim, Moon Ki;Park, Jae Hong;Lee, Kwang Hyun;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.515-521
    • /
    • 2009
  • In this study, the applicability of $CaCO_3$ as a seed material for crystallization reaction was tested. $CaCO_3$ was ground to lesser than 425 mesh and was made to media mixed with binder. Batch experiment was to investigate the ${PO_4}^{3-}-P$ removal efficiency of different parameters such as $CaCO_3$ dosage and binder ratio, size, type and mass of media. In addition, the effect of phosphorus removal from wastewater was tested using a lab-scaled crystallization reactor. At the results of the batch test, phosphorus removals were improved with increasing $CaCO_3$ dosage and media mass but were decreased with increasing media size. Moreover, phosphorus removals were influenced by specific surface area but media type. The average T-P and ${PO_4}^{3-}-P$ removal efficiency in a lab-scaled crystallization reactor with $CaCO_3$ media for wastewater were shown to be 60.2% and 60.3% for 18 days of operation time.

Recovery of high quality external carbon sources using crystallization from pretreated excess activated sludge by alkali and ozone (알칼리-오존 동시 전처리된 잉여슬러지로부터 결정화를 이용한 고품질 외부탄 소원 회수)

  • Seo, In S.;Kim, Hong S.;Kim, Byung G.;Kim, Youn K.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.641-646
    • /
    • 2008
  • In this research, recovery of high quality organics from excess activated sludge and its potential as a external carbon sources for BNR process was studied. By simultaneous treatment of alkali and ozone, TSS concentration was reduced by 32%, and RBDCOD fraction was increased by 76.2%, and major constitute of produced organic were acetic acid and propionic acid. Also, nitrogen and phosphorus were greatly solubilized. However, because acid-hydrolyzable phosphorus(AHP) was major part of solubilized phosphorus, $NH_4{^+}-N$ and $PO_4{^3}-P$ concentration were insufficient for effective formation of crystal like as MAP(Magnesium Ammonium Phosphate) and hydroxyapatite. By placing BPR reactor before alkali-ozone treatment reactor, $PO_4{^3}-P$ concentration in pretreated sludge was increased by 1.8 times, and improved potential of phosphorus recovery by crystallization. In experiment of crystallization, hydroxyapatite formation was more easily applied than MAP. By hydroxyapatite formation, $SCOD/PO_4-P$ ratio was greatly increased from 32.7 at control to 141.9 at $Ca^{2+}/PO{_4}^{3-}-P$ mole ratio of 2.4. The results based on this study indicated that the proposed system configuration has potential to reduce the excess sludge production, to recover phosphorus in usable forms as well as utilize organics as a external carbon source in BNR process.

A Study on the Phosphorus Removal from Wastewater by Eggshell (난각을 이용한 폐수중의 인 제거에 관한 연구)

  • Kim, Min-Su;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.174-180
    • /
    • 2004
  • This study is a fundamental research to test the applicability of abandoned eggshell as seed material for crystallization reaction. Eggshell was calcinated at $850^{\circ}C$ and ground to lesser than 0.42mm. The calcination characteristics of eggshell were examined by X-ray diffraction (XRD). The effect of initial calcium concentration, alkalinity, reaction temperature condition, seed dosage were studied by batch test. For the low concentration sample(P concentration is under 50mg/L), more than 90% of P can be removed. The effect of initial calcium concentration(0~120mg/L) was performed. At the result of the test, more than 50mg/L calcium concentration has high removal efficiency. Alkalinity effect was studied for synthetic solution(100mg/L initial P, 50mg/L calcium, 0.025% seed dosage) with 0~300mg/L bicarbonate alkalinities. For synthetic solution(100mg/L initial P, 50mg/L calcium, 100mg/L bicarbonate alkalinity, 0.025% seed dosage), the phosphorus concentration was examined with $10{\sim}35^{\circ}C$. In addition, calcinated eggshell was injected to swine wastewater to test the applicability to actual wastewater.

Effects of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrated from by-Product Gypsum of Phosphoric Acid Process at Hydrothermal Condition (가압수열 수용액중에서 인산석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향)

  • 이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.343-348
    • /
    • 1987
  • The effects of salts such as aluminum sulfate as inorganic salt(2-4%), and sodium salts of citrate, tartrate, succinate, potassium tartrate and gelatin as organic salts(0.1%) on the formation of ${\alpha}$-calcium sulfate hemihydrate from by-product gypsum of phosphoric acid process under hydrothermal condition at 123$^{\circ}C$ and 133$^{\circ}C$ were investigated. Aluminum sulfate solution exhibited the catalystic effected on the crystallization of ${\alpha}$-calcium sulfate hemihydrate of which was assumed in the prismatic form, and organic salts solution exhibited little effect on the catalystic action to the crystallization, than inorganic salts. In the acidic solution with sulfuric acid(pH=2), needle like crystal of calcium sulfate hemihydrate was obtained. Hydrothermal process with aluminum sulfate solution also showed certain amounts of impurity removal such as phosphorus penataoxide from calcium sulfate hemihydrate.

  • PDF

A Study on the Use of Oyster Shells for Phosphorus Removal (인 제거를 위한 패각의 활용법에 관한 연구)

  • Lee, Jong-Il;Kim, Woo-Hang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2008
  • In our country, limiting nutrient is known as phosphorus in the most lakes. Therefore, the removal of phosphorus is a very important process in sewage treatment. However, many of the sewage treatment plants employ the conventional activated sludge process, known to remove $10{\sim}30%$ of phosphorus. Thus, additional phosphorous removal process will be needed. Oyster shells have been known to remove phosphorus in water. The removal efficiency of phosphorus was highest at smallest size of oyster shells and at the highest pH for batch test. The phosphorous removal rate with various calcium concentrations was increased by increasing calcium concentration. At the 20 mg/l of calcium, more than 90% of phosphorous was removed in two hours. The removal efficiency of phosphorous was increased greatly at 300% of recirculation rate. With 300% of recirculation rate, the removal efficiency reached 80% at pH 11. The negative effects of bicarbonate on crystallization were observed in oyster shells. The effects of bicarbonate on rate constant were also investigated by applying these results to experimental equation. The rate constant was decreased at the inverse logarithm bicarbonate concentration.

  • PDF

Treatment of N, P of Auto-Thermal Thermophilic Aerobic Digestion Filtrate with Struvite Crystallization (Struvite 결정화 반응을 이용한 고온 소화 여과액의 N, P 처리 특성)

  • Choo, Yeon-Duk;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.783-789
    • /
    • 2011
  • Recently, auto-thermal thermophilic aerobic digestion (ATAD) has a great attention for destruction of wasted sludge biomass in wastewater treatment plant. Reduction of sludge concentration has been successfully achieved with pilot scale ATAD and ceramic filtration process in field condition. However, high concentration of COD, total nitrogen (TN) and total phosphorus (TP) was observed in filtrate, which should be treated before recirculation of filtrate to biological wastewater treatment plant. This study was focused on removal of nitrogen and phosphorus contained in the filtrate of ATAD, using struvite crystallization method. The effect of operational and environmental parameters (such as, N, P and Mg ion concentration and molar ratio, pH, reaction time, agitation strength, seed dosage, and reaction temperature) on the treatment of TN and TP with struvite crystallization were evaluated. Magnesium (as $MgCl_26H_2O$) and phosphorus (as $K_2HPO_4$) ions were, if necessary, added to increase nitrogen removal efficiency by the crystal formation. Average concentration of $NH_4^+-N$ and $PO_4^{3-}-P$ of the filtrate were 1716.5 mg/L and 325.5 mg/L, respectively. Relationship between removal efficiencies of nitrogen and phosphorus and molar ratios of $Mg^{2+}$ and $PO_4^{3-}-P$ to $NH_4^+-N$ was examined. Crystal formation and nitrogen removal efficiencies were significantly increased as increasing molar ratios of magnesium and phosphorus to nitrogen. As molar ratio of $Mg^{2+}:PO_4^{3-}-P:NH_4^+-N$ were maintained to 2 : 1 : 1 and 2 : 2 : 1, removal efficiencies of nitrogen and phosphorus were 71.6% and 99.9%, and 93.8% and 98.6%, respectively. However, the effect of reaction time, mixing intensity, seed dose and temperature on the struvite crystallization reaction was not significant, comparing to those of molar ratios. Settled sludge volume after struvite crystallization was observed to be reduced with increase of seed dose and to be increased at high temperature.

A Study on the Phosphorus Resources Recovery using the MAP + PACI (Ca과 응집제를 보완한 MAP법을 이용한 폐수로부터의 인 자원 회수에 관한 연구)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • Modern society has moved from a phosphorus recycling loop, where animal manure and human wastes were spread on farming land to recycle nutrients, to a once-through system, where phosphates are extracted from mined, non-renewable phosphate rock and end up either in landfill(sewage sludge, incinerator ash) or in surface waters. In this research, crystallization of nitrogen and phosphate with natural sources of $Mg^{2+}$ in synthetic water was tested. The operational parameters of pH, mixing time, and the magnesium molar ratio were investigated to find optimal conditions of the MAP precipitation using synthetic wastewater. The removal efficiency of phosphate increased with pH up to 11. By MAP precipitaiton of the synthetic waste water, 94% of the phosphate were eliminated at pH 11. It was found that at least 10 minutes mixing time was required and 20 minutes mixing time was recommended for efficient phosphate removal. High efficiency removal of phosphate was possible when the magnesium molar ratio was 1.0~2.0. The comparative study of different magnesium sources showed that coagulants (PAC) was the more efficient sources than only magnesium. The result showed that 97% of phosphate removal. In conclusion, coagulants (PAC) induced crystallization of struvite and hydroxyapatite was shown to be a technically viable process that could prove cost effective for removing phosphate in wastewater.

A Novel Solid Phase Epitaxy Emitter for Silicon Solar Cells

  • Kim, Hyeon-Ho;Park, Seong-Eun;Kim, Yeong-Do;Ji, Gwang-Seon;An, Se-Won;Lee, Heon-Min;Lee, Hae-Seok;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.480.1-480.1
    • /
    • 2014
  • In this study, we suggest the new emitter formation applied solid phase epitaxy (SPE) growth process using rapid thermal process (RTP). Preferentially, we describe the SPE growth of intrinsic a-Si thin film through RTP heat treatment by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Phase transition of intrinsic a-Si thin films were taken place under $600^{\circ}C$ for 5 min annealing condition measured by spectroscopic ellipsometer (SE) applied to effective medium approximation (EMA). We confirmed the SPE growth using high resolution transmission electron microscope (HR-TEM) analysis. Similarly, phase transition of P doped a-Si thin films were arisen $700^{\circ}C$ for 1 min, however, crystallinity is lower than intrinsic a-Si thin films. It is referable to the interference of the dopant. Based on this, we fabricated 16.7% solar cell to apply emitter layer formed SPE growth of P doped a-Si thin films using RTP. We considered that is a relative short process time compare to make the phosphorus emitter such as diffusion using furnace. Also, it is causing process simplification that can be omitted phosphorus silicate glass (PSG) removal and edge isolation process.

  • PDF