• Title/Summary/Keyword: Phosphorus budget

Search Result 31, Processing Time 0.029 seconds

Phosphorus Budget of a River Reservoir, Paldang (하천형 호수인 팔당호의 인 수지)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.270-284
    • /
    • 2018
  • Paldang is a river reservoir located in the Midwest of Korea, with a water volume of $244{\cdot}10^6m^3$ and a water surface area of $36.5km^2$. It has eutrophied since the construction of a dam at the end of 1973, and the phosphorus concentration has decreased since 2001. Average hydraulic residence time of the Paldang reservoir is about 10 days during the spring season and 5.6 days as an annual level. The hydraulics and water quality of the reservoir can differ greatly, both temporally and spatially. For the spring period (March to May) in 2001 ~ 2017, the reservoir mean total phosphorus concentration calculated from the budget model based on a plug-flow system (PF) and a continuous stirred-tank reaction system (CSTR) was 13 % higher and 10 % lower than the observed concentration, respectively. A composite flow system (CF) was devised by assuming that the transition zone was plug flow, and that the lacustrine zone was completely mixed. The mean concentration calculated from the model based on CF was not skewed from the observed concentration, and showed just 6 % error. The retention coefficient of the phosphorus derived from the CF was 0.30, which was less than those of the natural lakes abroad or river reservoirs in Korea. The apparent settling velocity of total phosphorus was estimated to be $93m\;yr^{-1}$, which was 6 ~ 9 times higher than those of foreign natural lakes. Assuming CF, the critical load line for the total phosphorus concentration showed a hyperbolic relation to the hydraulic load in the Paldang reservoir. This is different from the previously known straight critical load line. The trophic state of the Paldang reservoir has recently been estimated to be mesotrophic based on the critical-load curve of the phosphorus budget model developed in this study. Although there is no theoretical error in the newly developed budget model, it is necessary to verify the validity of the portion below the inflection point of the critical-load curve afterwards.

Regional Application of the OECD Phosphorus Budget: Comparison of the Input-Output Data Sources (OECD 인 수지 산정법의 지역단위 적용 연구: 유출입 자료 출처 비교)

  • Lim, Do Young;Ryu, Hong-Duck;Chung, Eu Gene;Kim, Yongseok
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1255-1266
    • /
    • 2017
  • Phosphorus (P) is an essential and major nutrient for both plants and animals. However, anthropogenic P in the environment may cause severe problems such as the deterioration of water quality. Therefore, it is essential for the Korean government to manage P in the agricultural sector. The annual P budget for Korea was 46 kg P ha-1 in 2013, placing Korea in second among Organisation for Economic Co-operation and Development (OECD) countries. P surplus and deficiency in agricultural lands can be estimated according to the P budget, which is one of the OECD agri-environment indicators. In the P budget, it is important to ensure consistency in the input-output data sources, in order to apply national and regional policies for the environmentally sound management of agricultural P. This study examines the impacts on the input-output data sources in the regional P budget in Korea. P budgets were between 99-145 kg-P/ha, depending on different data sources. We suggest two recommended data combinations (DC 1 and DC 2) for reliability of the data. P budgets calculated using DC 1 and DC 2 were 128 kg-P/ha and 97 kg-P/ha, respectively. According to the results, one of the core factors affecting P budgets was crop production. In this study, DC 2 was recommended rather than DC 1 in order to consider the cultivated areas for various crops. It is also necessary to analyze the sensitivity of the coefficients used in P budget in the future.

The Importance of Nitrogen Release and Denitrification in Sediment to the Nitrogen Budget in Hiroshima Bay

  • KIM Do-Hee;MATSUDA Osamu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.779-786
    • /
    • 1996
  • The main purpose of this study was to estimate the role of dissolved inorganic nitrogen (DIN) released from sediment and denitrification process in sediment on the nitrogen budget of Hiroshima Bay by means of collecting data on distributions and budgets of nitrogen and phosphorus in the bay, DIN fluxes across sediment-water interface and denitrification rates in the sediments of the same area. The TN : TP and DIN:DIP atomic ratios of the discharged freshwater were about 26 and 21, respectively. The standing stocks in the seawater of the TN : TP atomic ratio varied from 8 to 14 with an annual mean value of 11, while the DIN : DIP atomic ratio varied from 10 to 15 with an annual mean value of 12 in the bay. The residence time of nitrogen and phosphorus were estimated to be about 109 days and 200 days in the bay, respectively. The proportion of DIN released from sediment and denitrification rate to the loading of total nitrogen into Hiroshima Bay were $45\%\;(37\~82\%)\;and\;13\%(0.0\~37\%)$, respectively, and the amount of nitrogen through denitrification process was 6.5 times larger than the outflow of nitrogen from the bay. The results show that DIN released from sediment and denitrification process in sediment play important roles on the nitrogen budget in Hiroshima Bay.

  • PDF

Development of a Nutrient Budget Model for Livestock Excreta Survey (가축분뇨실태조사를 위한 양분수지 산정 모델 개발)

  • Kim, Deok-Woo;Ryu, Hong-Duck;Lim, Do Young;Chung, Eu Gene;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.769-779
    • /
    • 2017
  • Nutrient (i.e., nitrogen and phosphorus) budgets are required under a 'Livestock Excreta Survey'. A nutrient budget is one of the agri-environmental indicators that calculates the difference between the inputs and outputs of the amount of nutrients within a certain boundary and for a certain time period (e.g., 1 year). In this study, a nutrients budget model was developed to effectively determine the surplus of nutrients within a region in Korea. The C# program language was used in order to facilitate the deployment of a graphical user interface (GUI) and to enhance compatibility. Also, the model was developed on Windows OS, which is the commonly used operating system in Korea. The model was based on the OECD/Eurostat nutrient budget method, and it was modified to consider manure composting procedures as well. There are key features of the nutrient budget model, including directly use of the original data sets from various input and output sources, and a collectively exchange of the address in different formats. The model can quickly show the results of various spatial and temporal resolutions with the same data, as well as perform a sensitivity analysis with coefficients and easily compareresults using tables and graphs. Further, it would be necessary to study the extension of the scope of utilization, such as the application of various nutrient budget methods. It would also be helpful to investigate both pre and postprocessing information such as linking input data through online systems.

A Study on Phosphorus Loading model for Eutrophication Response in the Yongsan Lake (영산호의 부영양화 평가를 위한 인부하모델의 검토)

  • 류일광;이치영
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.97-104
    • /
    • 2000
  • The purpose of this is made an examination of phosphorus loading model for eutrophication response in the Yongsan lake. For the model, we measured the total amount of nutrients derived from the Yongsan river watershed, inflow rate to the Yongsan lake, water quality, and water budget from January to December in 1999. The total amount of precipitation in the Yongsan river watershed was 4,951.7$\times$10$^{6}$ ㎥/y and inflow amount was 2,569.7$\times$10$^{6}$ ㎥/y, therefore the outflow rate of the Yongsan river watershed was 51.9%. The develop loading of total nitrogen was 86,928.1kg/d and that of total phosphorus was 22,007.6kg/d at the Yongsan river watershed, But, as the inflow loading of total nitrogen was 33,962kg/d and the inflow loading of total phosphorus was 2,218kg/d to the Yongsan lake. so each infolw rate was 39.0% and 10.1%. The hydraulic residence time was 34days, total phosphorus loading [L(P)] on the surface area was 23.398g/㎥/y, the hydraulic load( $Q_{s}$) of inflow water was 74.269m/y, the reserve rate of phosphorus in the lake was 0.359, and the settinh velocity of phosphorus was 0.114m/d at the Yongsan lake. Mathematical model of phosphorus loading to estimate the responses of eutrophication at the Yongsan lake is [ $P_{j}$] = 0.838 [L(P)/Q.(1+√ $T_{w}$)$^{-1}$ ] . ] . .

  • PDF

On the Budget of Mineral Nutrients of Ginseng Plant (인삼의 시비량의 수지에 관한 연구)

  • 김준호
    • Journal of Ginseng Research
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1977
  • Mineral contents of sail in two-year-old ginseng plantation. of the top-dressings for ginseng and of the green grasses (Chung-Cho) were analyzed in order to clarify budget of inorganic nutrients of ginseng Plant. The amount of mineral nutrients contained in soil of two-year-old ginseng plantation had 56 times of nitrogen, 1.2 times of phosphorus and 20 times of potassium as compared with the requisition of two to sin-year-old ginseng plants per $\textrm{m}^2$. In consideration of the lack of phosphorus, it is recommendable to use bone mill as top dressing, which contains higher content of Phosphorus than ether top-dressings.

  • PDF

Simple Material Budget Modeling for the Paldang Reservoir in the Spring Season (팔당호의 춘계 단순물질수지 모델링)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.696-714
    • /
    • 2017
  • Simple material budget models were developed to predict the spring season (March ~ May) water quality for a river-type reservoir Paldang, in the Republic of Korea. These models are available at mixed water bodies whose light intensity is negligible at the bottom. The calculated data from the models fit quite well with field data collected for 30 years, from 1988 to 2017. The apparent settling velocity of total phosphorus was estimated to be $110m\;d^{-1}$. The critical hydraulic load that determines the usability of phosphorus for algal production appeared to be about $2.0m\;d^{-1}$. When a hydraulic load was larger than the critical value, the concentrations of chlorophyll ${\alpha}$ ($Chl.{\alpha}$), chemical oxygen demand (COD), and 5-day biochemical oxygen demand BOD in the reservoir water became insensitive to internal algal reactions. The model analysis showed that the allochthonous COD continued to increase while the allochthonous BOD slightly decreased after 1999. The decrease of allochthonous BOD is due to the expansion of sewage and wastewater treatment plants in the watershed. The increase of allochthonous COD seems to result from the increase in anthropogenic non-point sources as well as the increase in the discharge of natural organic matters due to climate change. Organic matter of algal origin continued to increase until the mid-2000s, but recently it has decreased as the phosphorus concentration has decreased. The COD and BOD of algal origin increased from 35 % and 27 % during 1988 ~ 1994 to 43 % and 40 % during 2000 ~ 2010, respectively, and then decreased to 25 % and 28 % during 2011 ~ 2017.

Effects of Macrophytes on Budget of Matters in Lake Paldang (대형수생식물이 팔당호의 물질 수지에 미치는 영향)

  • Park, Hae-Kyung;Jung, Dong-Il;Byeon, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.85-92
    • /
    • 2006
  • To evaluate the primary production and nutrient uptake of macrophytes in Lake Paldang, this study investigate the vegetation areas of six dominant aquatic plants including Typha angustifolia, Zizania latifolia, Phragmites australis, Trapa japonica, Nelumbo nucifera and Savinia natans, and contents of carbon, nitrogen and phosphorus of each macrophyte. Total vegetation area of six dominant aquatic plants was 1.37 $km^2$. Among them, Typha angustifolia was the most wide-distributed species which occupied the 46.7% of total vegetation area. Littoral zone of South Han river had the largest vegetation area with 0.458 $km^2$, and North Han river, Kyungan river and confluence area in the order named. The results of the contents of carbon, nitrogen and phosphorus of macrophytes showed that the carbon contents of emergent macrophytes was higher than that of other life-forms. The nitrogen content of Salvinia natans, free-floating macrophyte was highest and that of Typha angustifolia, emergent macrophyte was lowest. The phosphorus content of Trapa japonica showed the highest content of phosphorus among six macrophytes and emergent macrophytes such as Zizania latifolia and Phragmites australis showed lower contents of phosphorus than other life-forms. The annual net primary production of macrophytes in Lake Paldang, 2004, was calculated as 758.4 ton C $yr^{-1}$ and the annual net nitrogen and phosphorus uptake of macrophyte was 16,921 kg $yr^{-1}$ and 1,841.0 kg P $yr^{-1}$ respectively. Comparing the total budget of organic carbon, nitrogen and phosphorus in Lake Paldang, the amount of primary production and nutrient uptake by macrophytes take a small portion in total budget implying macrophytes do not play an important role in budget of matters in river-type lake, Lake Paldang.

Excimer Laser-Assisted In Situ Phosphorus Doped $Si_{(1-x)}Ge_x$ Epilayer Activation

  • Bae, Ji-Cheul;Lee, Young-Jae
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.247-252
    • /
    • 2003
  • This paper presents results from experiments on laser-annealed SiGe-selective epitaxial growth (LA-SiGe-SEG). The SiGe-SEG technology is attractive for devices that require a low band gap and high mobility. However, it is difficult to make such devices because the SiGe and the highly doped region in the SiGe layer limit the thermal budget. This results in leakage and transient enhanced diffusion. To solve these problems, we grew in situ doped SiGe SEG film and annealed it on an XMR5121 high power XeCl excimer laser system. We successfully demonstrated this LA-SiGe-SEG technique with highly doped Ge and an ultra shallow junction on p-type Si (100). Analyzing the doping profiles of phosphorus, Ge compositions, surface morphology, and electric characteristics, we confirmed that the LA-SiGe-SEG technology is suitable for fabricating high-speed, low-power devices.

  • PDF

Estimation of Material Budget in Okutama Forest Area from Satellite Images

  • Ito, Hisao;Ogawa, Susumu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.476-478
    • /
    • 2003
  • Capability of material fixation in forest was noticed since COP3, but now it was difficult to understand material fixation in wide area. In this study, we attempted to estimate and test the amount of carbon, nitrogen, and phosphorus fixed by forest from satellite images. First, we classified into tree species and estimated the number of trees in the forest by species, area, and digital numbers. We inspected to apply it in wide area. Next, we compared the amount of carbon, nitrogen, and phosphorus with NDVI and each band of satellite images.

  • PDF