• Title/Summary/Keyword: Phosphorus Removal

Search Result 684, Processing Time 0.027 seconds

Analysis on the distribution of nitrogen and phosphorus removing microorganisms and nitrifying activity in a trickling filter (살수여상에서의 질소, 인 제거 미생물 분포 및 질산화 활성 조사)

  • Kim, Dong-Jin;Yoo, Ik-Keun;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.691-698
    • /
    • 2009
  • Trickling filter has been extensively studied for the domestic wastewater treatment especially for the small scale plants in rural area. The performance of the trickling filter depends on the microbial community and their activity in the biofilms on the media. Nitrification. denitrification, and phosphorus removal of the trickling filter from the wastewater depend on the activity and the amount of the specific microorganisms responsible for the metabolism. For the estimation of the performance of a trickling filter, batch nitrification experiment and fluorescence in situ hybridization (FISH) were carried out to measure the microbial activity and its distribution on the media of the trickling filter. Batch nitrification activity measurement showed that the top part of the 1st stage trickling filter had the highest nitrification activity and the maximum activity was 0.002 g $NH_4$-N/g MLVSS${\cdot}$h. It is thought that higher substrate (ammonia) concentration yields more nitrifying bacteria in the biofilms. The dominant ammonia oxidizer and nitrite oxidizer in the biofilm were Nitrosomonas species and genus Nitrospira, respectively, by FISH analysis. Less denitrifiers were found than nitrifiers in the biofilm by the probe Rrp1088 which specifically binds to Rhodobacter, Rhodovulum, Roseobacter, and Paracoccus. Phosphorus accumulating bacteria were mostly found at the surface of the biofilm by probe Rc988 and PAO651 which specifically binds to Rhodocyclus group and their biomass was less than that of nitrifiers.

Isolation and Characterization of Phosphorus Accumulating Acinetobacter CW3 (인 축적균 Acinetobacter CW3의 분리 및 특성)

  • 심성훈;류원률;이영호;김정목;조무환
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.71-75
    • /
    • 1999
  • A highly effective phosphorus accumulating bacterium named Acinetobacter CW3 was isolated from the nature by using Winogradsky columns. The optimal cultivation conditions of Acinetobacter CW3 in shaking flask were determined as $20^{\circ}C$, pH 7, 200rpm, 18.5mg $PO_4$-P/L. Acientobacter CW3 could remove phosphorus completely in 12hours for a batch culture at optimal cultivation condition. This bacterium could uptake phosphorus on aerobic condition and release it on anaerobic condition.

  • PDF

Effect of Coagulant addition on Nutrient Removal Efficiency in a Submerged Membrane Bioreactor (응집제의 첨가에 따른 Membrane bioreactor 의 고도처리 효율 연구)

  • Park, Jong-Bu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.235-241
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in the submerged membrane bioreactor by addition of alum directly into aerobic tank. Membrane bioreactor consists of three reactors such as two intermittent anaerobic tanks and the aerobic tank with hollow fiber membrane. The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the membrane bioreactor were 94.0%, 99.1%, 99.9%, 66.9%, and 58.9%, respectively. In addition, The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the membrane bioreactor with alum addition were 93.4%, 99.0%, 99.9%, 63.2%, and 96.8%, respectively. There was little difference between them on the nutrient removal efficiencies except phophorus removal. The estimated sludge production, specific denitrification rate, specific nitrification rate and phosphorus removal content on the membrane bioreactor were 1.76 kgTSS/d, $0.055mgNO_3-N/mgVSS{\cdot}d$, $0.031mgNH_4-N/mgVSS{\cdot}d$, and 0.095 kgP/d, respectively. And The estimated sludge production, specific denitrification rate, specific nitrification rate and phosphorus removal content on the membrane bioreactor with alum addition were 2.90 kgTSS/d, $0.049mgNO_3-N/mgVSS{\cdot}d$, $0.030mgNH_4-N/mgVSS{\cdot}d$, and 0.160 kgP/d, respectively. The alum content added was 1.7 molAl/molP on an average. The increasing ratio of tran-membrane pressure on the membrane bioreactor was $0.0056kgf/cm^2{\cdot}compared$ to $0.0033kgf/cm^2{\cdot}d$ on the membrane bioreactor with alum addition. There was a slightly reduction effect on membrane fouling by alum addition.

Study on Phosphorus Removal in the Secondary Effluent by Flotation Using Microbubble Liquid Film System (미세기포 액막화 부상법을 이용한 하수 2차 처리수의 인 제거에 관한 연구)

  • Lee, Shun-Hwa;Kang, Hyun-Woo;Lee, Se-Han;Kwon, Jin-Ha;Jung, Kye-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.42-48
    • /
    • 2012
  • In this study, experiment on phosphorus removal was performed by using microbubble liquid film flotation tank with microbubble module. After dissolving gas and liquid in dissolving tank, microbubble liquid film system created microbubbles in equal size under fixed low pressure. After being passed through $A_2O$ and m-$O_3$ process, secondary treatment wastewater was used as influent in phosphorus removal process. When the T-P concentration of influent was 2.89 mg/L, alum(8%, 30 mg/L) was injected into a microbubble flotation tank, the treatment resulted 94% of T-P removal rate. Remaining T-P concentration was less than 0.2 mg/L, which is in accord with the effluent quality standard. Seasonal variations in water temperature showed no differences in T-P removal property. When the inflow concentration of SS was 1.0 mg/L or more, it served as coagulation nuclei in the coagulation process. In that condition, average T-P removal rate was higher than 97%. When 50% of floated scum was returned, coagulator Al included in scum assisted the injected coagulator and maximized the coagulation efficiency of pollutant. In such treatment, the T-P concentration was measured as 0.18 mg/L and satisfied the outflow water quality standard, which is 0.2 mg/L or less.

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.

Feasibility of Powdered MSWI Ash Melted Slag as a Seed Crystal of crystallization reaction for the Removal of Phosphorus from Sewage (하수중 인제거를 위한 정석탈인반응의 정석재로서 소각분말 용융슬래그의 이용 가능성 평가)

  • Kim, Choong Gon;Shin, Hyun Gon;Kim, Seung Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • This study is a fundamental research to test the applicability of powdered MSWI(Municipal Solid Waste Incinerator) ash melted slag as a seed Crystal for crystallization reaction. Powdered ash melted slag was melted at $1100^{\circ}C$ and ground to lesser than 0.35mm. According to the result of the tests, calcium, enough for crystallization reaction, was eluted from powdered ash melted slag. Moreover, sample(Phosphorus concentration is under 10 mg/L), more than 90% of Phosphorus can be removed. So we rectify the Phosphorus concentration to 100 mg/L. Alkalinity, being well known that it interferes crystallization reaction, effect was studied for synthetic solution(100 mg/L initial Phosphorus concentration, 50 mg/L calcium, pH 8, 1% powdered ash melted slag dosage). For this result, we know that Phosphorus removal is hindered by alkalinity. In addition, the effect of reaction temperature was performed at the same method. The reaction velocity was increased through raising the reaction temperature.

Selection of Microalgae for Advanced Treatment of Swine Wastewater and Optimization of Treatment Condition. (축산폐수의 3차 처리를 위한 미세조류의 선별 및 처리조건의 최적화)

  • 김성빈;이석준;김치경;권기석;윤병대;오희목
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.76-82
    • /
    • 1998
  • The feasibility of algae as means of removing nitrogen and phosphorus from secondary treated swine wastewater was studied. Among the tested 7 species of Chlorella vulgaris (UTEX 265), Chlorella sp. GE 21, Botryococcus braunii (UTEX 572), Botryococcus sp. GE 24, Scenedesmus quadricauda, Phormidium sp. GE 2, and Spirulina maxima (UTEX 2342), C. vulgaris was selected for its fast growth and abilities to remove nitrogen and phosphorus and to produce algal biomass from swine wastewater. C. vulgaris grew well at 35$^{\circ}C$, and the optimum initial pH for growth was 8.0. In the effect of light intensity, the growth of C. vulgaris was limited under a light intensity of less than 40 ${\mu}$E/$m^2$/s. The secondary treated swine wastewater contained 58.7 mg/l of total nitrogen and 14.7 mg/l of total phosphorus, and was diluted to 75, 50, and 25% with groundwater to be treated. Nitrogen and phosphorus were removed by C. vulgaris in all diluted swine wastewaters among which the most effective removal was in 75% swine wastewater (swine wastewater:groundwater=3:1). There was a tendency of linear increase in nitrogen and phosphorus removal time with increasing concentration of swine wastewater. Under the optimized culture condition, total nitrogen and total phosphorus were effectively removed to 95.3% and 96.0%, respectively, in 25% swine wastewater after 4-day incubation.

  • PDF