• Title/Summary/Keyword: Phosphorus

Search Result 4,200, Processing Time 0.029 seconds

Phosphorus and Nitrogen Removal from Synthetic Wastewater by Intermittently Activated Sludge combined with Aluminium Corrosion (알루미늄부식을 조합한 간헐폭기법에 의한 합성폐수 중의 인 및 질소 제거)

  • 정경훈;정오진;최형일
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.99-106
    • /
    • 2001
  • A laboratory experiment was performed to investigate phosphorus and nitrogen removal from synthetic wastewater by intermittently activated sludge process packed with aluminium plate. Three continuous experimental systems, I. e. an intermittently activated sludge process(Run A), an intermittently activated sludge process with an aluminium plate packed into the reactor(Run B), and a reactor post stage(Run C) were compared. In the batch experiments, the phosphorus removal time in the reactor packed with copper and aluminium plate simultaneously was faster than that of the reactor packed with only an aluminium plates. However, the reactor packed with only an aluminium plate could be used for phosphorus removal. Move phosphorus was removed with an increase of surface area of aluminium plate and electrolysis(NaCl) concentration. The efficiency of COD and nitrogen removal was not affected in Run B. However, the phosphrus removal efficiency decreased because of reaction products and activated sludge which gradually covered gradually the surface of the aluminium plate. The efficiency of phosphorus removal in Run C was 86.3% at the HRT of 3.2 hours. Especially, the efficiency of phosphorus removal in Run C was higher than that in Run B.

  • PDF

Estimation of optimal phosphorus and calcium levels on the growth and cast production of earthworm(Eisenia foetida) (지렁이의 생육과 분립생산을 위한 적정 인과 칼슘 수준의 추정)

  • Lee, Ju-Sam;Lee, Pil-Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.96-102
    • /
    • 2002
  • The purpose of this study was estimate the optimal phosphorus and calcium levels of Korean native cow manure on the growth and cast production of earthworm(Eisenia foetida). Phosphorus and calcium levels supplemented to cow manure were 0%(without earthworm), 2% and 4%, and 0.01%, 0.02%, 0.04% and 0.06% of the cow manure by weight, respectively. The maximum fresh weight and increasing rate of earthworm were obtained with 2% phosphorus level, but there was not significant differences between calcium levels. The ratios of available phosphorus to calcium contents of cast were 1.04-1.20:1 with 2%, and 1.28-1.37:1 with 4% phosphorus levels. Conversion rate of organic matter to earthworm tissue were 0.35-0.41% with 2%, and 0.25-0.40% with 4% phosphorus levels.

  • PDF

Increasing Dietary Phosphorus Level for Finishing Yearling Holstein Steers

  • Brokman, A.M.;Lehmkuhler, Jeff W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.220-224
    • /
    • 2008
  • The need for refining dietary nutrient levels and limited information regarding Holstein steer and phosphorus supplementation led to the objective of examining the response of removing supplemental dietary phosphorus from a corn-based finishing diet offered to yearling Holstein steers. Two groups of yearling Holstein steers were utilized to study responses of increasing dietary phosphorus level during the finishing period. In Exp. 1, 96 Holstein steers (419 kg) were blocked into four weight groups. Dietary treatments included no additional phosphorus (NDC) or the inclusion of dicalcium phosphate (DCP) to achieve 0.30% phosphorus (P) in the complete diet. Daily gain, DMI and carcass traits were not different (p>0.05). Overall gain efficiency was slightly lower for NDC (p<0.05). Exp. 2 consisted of 78 Holstein steers (491 kg) blocked into two weight groups. Steers were harvested on d 84 and 112 d on test with carcass data collected following a 48-h chill. No differences (p>0.05) were detected for DMI, ADG, or gain efficiency. No differences (p>0.05) were detected in carcass characteristics in this experiment. Percent bone ash, calcium, P, and bending moment also did not differ among treatments (p>0.05). Removing supplemental phosphorus in the feedlot diet did not produce adverse effects on steer performance, carcass, or rib bone characteristics for yearling Holstein steers.

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.

Prediction of Phosphorus Transport from Sediment and Development of Phophorus Control Technology - I. Prediction of Phosphorus Transport from Sediment (저질토로부터의 인의 용출거동 예측 및 제어기술 개발 - I. 저질토로부터의 인의 용출거동 예측)

  • Lee, Jung-Yub;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.89-94
    • /
    • 1999
  • In this study small glass columns with 2.5cm inner diameter and 24.5cm length were used as many as the sample numbers to study the effects of initial pH, temperature, dissolved oxygen concentration, and sediment depth on the release of phosphorus from lake sediment. No phosphorus release occurred at $10^{\circ}C$ with all pHs, and release rate at $25^{\circ}C$ was higher than that at $35^{\circ}C$ with pH 4 and reverse trends were observed at pH 7 and 10. Under all conditions, DO concentrations were decreased and equilibrium was obtained after 4-8 days when phosphorus release started and the Do concentrations were less than 1 mg/l. Sediment depth had little effect on phosphorus release rate. It was found that relation between released SRP(Soluble Reactive Phosphorus) concentration and time was zero order reaction and reaction rate coefficients were obtained. The amount of phosphorus release from lake sediment can be predicted by considering these k values.

  • PDF

Total assessment for phosphorus input load of public wastewater and livestock manure treatment facilities in Korea (우리나라 공공하수처리시설 및 가축분뇨공공 처리시설의 인(P) 유입부하량에 대한 총량평가)

  • Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.325-335
    • /
    • 2018
  • The annual total phosphorus load caused by public wastewater, nightsoil and livestock manure treatment facilities in Korea has been examined macroscopically. Annual domestic average phosphorus (P) inflows through the income of phosphate rock for the last five years (2012 - 2016) were analyzed as 76,598 tons/year. As of the year 2015, the total loadings of phosphorus attributed to public wastewater treatment facilities, nightsoil treatment facilities and livestock wastewater were estimated as 30,269 tons/year, 1,909 tons/year and 18,138 tons/year, respectively. Considering the amount of phosphorus imports, the annual phosphorus load from wastewater, livestock wastewater and excretions is equivalent to 39.5%, 23.7%, 2.5% and totally 65.7%(39.5% + 23.7% + 2.5%). Therefore, the introduction of phosphorus recovery and recycling processes for the public wastewater and livestock manure treatment facilities has been found to be effective because it could reduce the import amount of phosphate rock by up to 60% or more.

Application of CE-QUAL-W2 [v3.2] to Andong Reservoir: Part II: Simulations of Chlorophyll a and Total Phosphorus Dynamics

  • Ram, Bhattarai Prasid;Kim, Yoon-Hee;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.472-484
    • /
    • 2008
  • The calibrated Andong Reservoir hydro-dynamic module (PART I) of the 2-dimensional hydrodynamic and water quality model, CE-QUAL-W2 [v3.2], was applied to examine the dynamics of total phosphorus, and chlorophyll $\alpha$ concentration within Andong Reservoir. The modeling effort was supported with the data collected in the field for a five year period. In general, the model achieved a good accuracy throughout the calibration period for both chlorophyll ${\alpha}$ and total phosphorus concentration. The greatest deviation in algal concentration occurred on $10^{th}$ October, starting at the layer just beneath the surface layer and extending up to the depth of 35 m. This deviation is principally attributed to the effect of temperature on the algal growth rate. Also, on the same date, the model over-predicts hypolimnion and epilimnion total phosphorus concentration but under-predicts the high concentrated plume in the metalimnion. The large amount of upwelling of finer suspended solid particles, and re-suspension of the sediments laden with phosphorus, are thought to have caused high concentration in the epilimnion and hypolimnion, respectively. Nevertheless, the model well reproduced the seasonal dynamics of both chlorophyll a and total phosphorus concentration. Also, the model tracked the interflow of high phosphorus concentration plume brought by the turbid discharge during the Asian summer monsoon season. Two different hypothetical discharge scenarios (discharge from epilimnetic, and hypolimnetic layers) were analyzed to understand the response of total phosphorus interflow plume on the basis of differential discharge gate location. The simulated results showed that the hypolimnetic discharge gate operation ($103{\sim}113\;m$) was the most effective reservoir structural control method in quickly discharging the total phosphorus plume (decrease of in-reservoir concentration by 219% than present level).

Biological Nutrient Removal by Enhancing Anoxic Phosphate Uptake (무산소 조건에서의 인섭취를 이용한 생물학적 영양염류 제거)

  • Lee, Dae Sung;Jeon, Che Ok;Park, Jong Moon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.861-867
    • /
    • 2000
  • The feasibility of simultaneous phosphorus and nitrogen removal by enhancing anoxic phosphorus uptake was investigated in a sequencing batch reactor (SBR). By introducing an anoxic phase into an anaerobic-aerobic SBR (AO SBR), significant amounts of denitrifying phosphorus accumulating organisms (DPAOs) which can utilize nitrate as electron acceptor could be accumulated in the reactor (anaerobic-aerobic- anoxic-aerobic SBR, $(AO)_2$ SBR). A direct comparison of phosphorus uptake rate under anaerobic and aerobic conditions showed that the fraction of DPAOs in P-removing sludge were increased from 10% in the AO SBR to 64% in $(AO)_2$ SBR. The $(AO)_2$ SBR showed stable phosphorus and nitrogen removal efficiency: average removal efficiencies of TOC, total nitrogen, and phosphorus were 92%, 88%, and 100%. respectively. Results of the $(AO)_2$ SBR operation and batch tests showed that nitrite (up to 10 mg-N/L) was not detrimental to anoxic phosphorus uptake and could serve as good electron acceptor like nitrate.

  • PDF

Sensing Technology for Rapid Detection of Phosphorus in Water: A Review

  • Islam, Sumaiya;Reza, Md Nasim;Jeong, Jin-Tae;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.138-144
    • /
    • 2016
  • Purpose: Phosphorus is an essential element for water quality control. Excessive amounts of phosphorus causes algal bloom in water, which leads to eutrophication and a decline in water quality. It is necessary to maintain the optimum amount of phosphorus present. During the last decades, various studies have been conducted to determine phosphorus content in water. In this study, we present a comprehensive overview of colorimetric, electrochemical, fluorescence, microfluidic, and remote sensing technologies for the measurement of phosphorus in water, along with their working principles and limitations. Results: The colorimetric techniques determine the concentration of phosphorus through the use of color-generating reagents. This is specific to a single chemical species and inexpensive to use. The electrochemical techniques operate by using a reaction of the analyte of interest to generate an electrical signal that is proportional to the sample analyte concentration. They show a good linear output, good repeatability, and a high detection capacity. The fluorescence technique is a kind of spectroscopic analysis method. The particles in the sample are excited by irradiation at a specific wavelength, emitting radiation of a different wavelength. It is possible to use this for quantitative and qualitative analysis of the target analyte. The microfluidic techniques incorporate several features to control chemical reactions in a micro device of low sample volume and reagent consumption. They are cheap and rapid methods for the detection of phosphorus in water. The remote sensing technique analyzes the sample for the target analyte using an optical technique, but without direct contact. It can cover a wider area than the other techniques mentioned in this review. Conclusion: It is concluded that the sensing technologies reviewed in this study are promising for rapid detection of phosphorus in water. The measurement range and sensitivity of the sensors have been greatly improved recently.

Biological Nitrogen and Phosphorus Removal Characteristics on Organic Material and Nitrate Loadings in SBR Process (연속회분식반응조에서 유기물 부하와 질산염농도에 따른 생물학적 질소 및 인 제거 특성)

  • Kim, I-Tae;Lee, Hee-Ja;Kim, Kwang-Soo;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.571-576
    • /
    • 2004
  • Since anaerobic/anoxic/oxic process, which is a typical mainstream biological nitrogen and phosphorus removal process, utilizes influent organic matter as an external carbon source for phosphorus release in anaerobic or anoxic stage, influent COD/T-P ratio gives a strong influence on performance of phosphorus removal process. In this study, a bench scale experiment was carried out for SBR process to investigate nitrogen and phosphorus removal at various influent COD/T-P ratio and nitrate loadings of 23~73 and 1.6~14.3g $NO_3{^-}-N/kg$ MLSS, respectively. The phosphorus release and excess uptake in anoxic condition were very active at influent COD/T-P ratios of 44 and 73. However, its release and uptake was not obviously observed at COD/T-P ratio of 23. Consequently, phosphorus removal efficiency was decreased. In addition, the phosphorus release and uptake rate in anoxic condition increased as the nitrate loading decreased. Specific denitrification rate had significantly high correlation with organic materials and nitrate loadings of the anoxic phase too. The rate of phosphorus release and uptake in the anoxic condition were $0.08{\sim}0.94kg\;S-P/kg\;MLSS{\cdot}d$ and $0.012{\sim}0.1kg\;S-P/kg\;MLSS{\cdot}d$, respectively.