• Title/Summary/Keyword: Phosphorous Concentration

Search Result 211, Processing Time 0.029 seconds

Characteristics of Water Quality at Main Streams and Lake Doam in Daegwallyeong Area (대관령 지역 주요 하천 및 도암호의 수질 특성)

  • Park, Kyeong-Hun;Kim, Byeong-Seok;Yun, Hye-Jeong;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Choi, June-Yeol;Kim, Ki-Deog;Jin, Yong-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.882-889
    • /
    • 2012
  • This study was surveyed that water physiochemical characteristics and phytoplankton incidence of main stream and Lake Doam near to Daegwallyeong agricultural area. Based on above results, it was conducted to get information overall water characteristics in south Han upstream river. COD value of Lake Doam was $6.1mg\;L^{-1}$ and T-P (Total phosphorous) from there was $0.26mg\;L^{-1}$ which was higher than the value of grade VI based on lake water living environment standard. Suspended solid was an average of 9.77 NTU which was higher than value of lake living standard. Concentration of phytoplankton was over $2.0{\times}10^3Cell\;mL^{-1}$ from July to September. It was considered that cyanobacteria were occurred due to massive influx of nutrient material by high temperature and rainfall during this season. Compare to Ontario's sediment quality guidelines, T-N and T-P was middle value between LEL and SEL in Lake Doam. This value means that contamination in water is serious. Therefore, it is considered that systematic management was needed to reduce and block contamination source.

Nitrogen and Phosphorus Removal in Long Term Pilot Plant Operation Using Submerged Hollow Fiber Membrane and Ferric Chloride (침지형 중공사막과 철염을 이용한 Pilot MBR 공정의 장기운전에 따른 질소, 인 제거 특성)

  • Cheong, Jin-Ho;Heo, Yong-Rok;Im, Jeong-Dae;Lee, Eui-Sin;Park, Myung-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1168-1173
    • /
    • 2005
  • Pilot scale vertical-type membrane bioreactor was operated to examine the effect of $FeCl_3$ injection on the removal of organics, nitrogen and phosphorous, and additionally trans-membrane pressure (TMP) was observed. The membrane type was hollow fiber membrane with pore size of $0.25\;{\mu}m$, and the material was polytetrafluoroethylene (PTFE). The membrane permeate was continuously removed by a pump under a constant flux ($25\;L/m^2/h$). Air back-flushing technique were adopted to reduce fouling. As a result, TMP was increased more slowly than that of the operation without air back-flushing, During long-term operation, approximately 310 days, the injection of $FeCl_3$ was effective not only in removing phosphorous chemically but also in reducing TMP increase. Furthermore, while the average COD and T-N concentration of the effluent without $FeCl_3$ injection was 14.3 mg/L and 6.0 mg/L respectively, that of effluent with $FeCl_3$ was 11.3 mg/L and 6.0 mg/L respectively, which confirmed the effects of $FeCl_3$.

Management of water quality by estimated the point source in Mokpo inner bay (점 오염원 조사를 통한 목포 내항의 수질관리)

  • Kim, Do-Hee;Lee, Ha-Ju
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.121-128
    • /
    • 2006
  • The results of COD researched on August of 2004 were 6.8 ppm in North Mokpo inner Bay, 4.4 ppm in front of YongSang Bank and 4.6 ppm in front of ShinAn Beach Hotel which is over III level Marine-Environmental Standard. The other five stations sea water quality of Mokpo inner bay were reached II-III level. Concentration of total nitrogen range from 1.23 ppm to 3.56 ppm and total phosphorous was range from 0.07 ppm to 0.12 ppm which were II-III level. This results show that the Mokpo inner bay is unsuitable for aquaculture and growth of fish and for use of marine resort, it can be only available for industrial and harbour use. In results of estimated point source flow into Mokpo inner bay, the occupation ratio from YoungSang river in total inflow of TN and TP were up to 49-89 % respectively. It is indicate that in order to improve the water quality of MokPo inner bay have to control the discharge from YoungSang river first of all, then control the discharge from North Harbour domestic wastewater treatment, InAm river and NamHae domestic wastewater treatment.

  • PDF

Soil Chemical Properties of Peach Orchard and Nutrient Content of Peach Leaves In Gyeongbuk Area (경북지역 복숭아 과수원 토양 화학성 및 복숭아 엽의 양분함량 조사)

  • Seo, Young-Jin;Kim, Jong-Su;Kim, Jae-Kyu;Cho, Jae-Uk;Kwon, Tae-Young;Lee, Jae-Seog
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.175-184
    • /
    • 2002
  • Soil chemical parameters of peach orchards and the concentration of nutrients in peach leaves were investigated. Results of soil analysis showed that pH value and content of exchangeable calcium was quite low, required to adjust soil acidity in many investigated soils. Nitrogen and phosphorous contents in leaves were founded to be excessive comparing to RDA's optimal levels(N $29.3{\sim}35.9g\;kg^{-1}$, P $1.7{\sim}2.2g\;kg^{-1}$), while calcium contents were lower than optimal levels($11.2{\sim}21.0g\;kg^{-1}$) in many sites and Potassium content was higher in peach cultivars than nectarine cultivars. Correlation analysis revealed that organic matter contents in subsoils and exchangeable calcium content in soils(top and subsoil) were increased with cultivation year, but available phosphate contents in subsoils were decreased. Organic matter and exchangeable magnesium contents in top soils were positively correlated with potassium and magnesium contents in leaves, whereas were negatively correlated with calcium contents in leaves, impling antagonistic absorption of calcium against potassium and magnesium. The findings indicated that most of soils ought to managed to adjust soil acidity and application amount of nitrogen, phosphorous fertilizer and compost should be controlled properly.

The Distribution of phosphorus in the Gomso Bay Tidal Flat (곰소만 조간대에서 인의 시공간적 분포)

  • 양재삼;김영태
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.171-180
    • /
    • 2002
  • The temporal and spatial distributions of phosphorus have been investigated in the Gomso Bay, Korea. TP, PIP, TOP and DIP in sediment were found 548.8mg P kg$^{-1}$ , 426.1mg P kg$^{-1}$ , 122.6mg P kg$^{-1}$ , and 0.217mg P kg$^{-1}$ , respectively with a decreasing order of PIP>TOP>DIP. Any temporal or spatial trend has not been found on the distribution of TP in the sediment, except the high TP values near the mouth of Julpo-chun. We found seasonal patterns high TOP(28.90% of TP) and low TIP(71.10% of TP) in August, but low TOP(15.63% of TP) and high TIP(84.38% of TP) in November. There were three times higher DIP concentration in August than in November. Such case is probably not only due to the enhanced supply of DIP directly from the decomposition of organic matter from overlying water in summer, but also the released phosphate from the adsorbed particulate matter such as PIP under the low pH and Eh conditions at the subsurface layers of the sediment induced by the active microbial respiration of increased organic materials in summer. Primarily, the source of phosphorous from municipal sewage strongly influenced the early stage of the distribution of all the phosphorous in the Gomso tidal flat. Notwithstanding, through the processes of diagenesis in sediment, water temperature and organic contents probably functioned as the key parameters to control the temporal distributions of TOP, TIP and DIP in the Gomso tidal flat.

Vertical Flow Zeolite-Filled Reed Bed with Intermittent Feeding for Sewage Treatment (수직 흐름 제올라이트 갈대 여과상에 의한 생활하수 처리)

  • Seo, Jeoung-Yoon
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2007
  • A sewage was treated using a vertical flow zeolite-filled reed bed. The sewage from the student dormitory of Changwon National University was fed into the reed bed for 10 minutes every 6 hours at the hydraulic load of $314L/m^3{\cdot}$day. The filtering height of the reed bed was 100 em and the zeolite mixture was filled in the reed bed. The mixture consisted of the same volume of two types of zeolite: 0.5$\sim$1 mm and 1$\sim$3 mm in diameter. Annual average removal efficiency was 88 89.9%, $COD_{Cr}$ 86.1 %, $COD_{Mn}$ 81.2%, T-N 34.0%, $NH_4^+$-N 97.3% and T-P 34.6%. T-N of effluent was mostly $NO_3^-$-N and the concentration of $NO_2^-$-N in effluent was lower than 0.1 mg/L. All removal efficiencies did not show a remarkable seasonal change. The ranking of phosphorous fractions fixed to the zeolite in column test was Ca-P > Fe-P > reductant soluble Fe-P > occluded P > saloid P > AI-P at all depths of the filter. All phosphorous fractions except for AI-P reduced at deeper filter layer, while their content ratios increased at deeper filter layer. Organic matter content was the highest at the highest layer (0$\sim$5 cm from the top of the filter) and only small differences were observed at the deeper filter layer than 5 em from the top. Organic matter content increased at all depths of the filter with the operating time.

A Study on Nutrients Intakes, Body Composition and Hematological Status of High School Girls in Fishing and Urban Areas (어촌과 도시지역 여고생의 영양실태, 체조성 및 혈액성상에 관한 연구)

  • 황금희;허영란;임현숙
    • Korean Journal of Human Ecology
    • /
    • v.1 no.1
    • /
    • pp.81-93
    • /
    • 1998
  • The purpose of this study was to examin height, weight and body composition nutrient intakes and serum lipids for high school girls in urban and fishing area. The subjects consisted of 78(44 fishing and 34 urban) high school girls aged in average 17.3 and 17 years. Their dietary intakes were assesed for 1 day by means of 24 hours dietary recall method. Concentrations of serum lipids, percentage of body fat and volume of total body water were measured. The mean energy intake of the subjects were 1431 ㎉ in fishing and 1659 ㎉ in urban area. The subjects in fishing area(urban) consumed 58(67) g protein, 27(36) g lipid, 459(634) mg calcium, 676(945) mg phosphorous, 11(14) mg iron, 786(574) RE retinol, 2.8(3.6) mg tocopherol, 0.9(1.0) mg thiamin, 1.2(1.1) mg riboflavin, 16.9(20.5) mg niacin and 64.1(92.8) mg ascorbic acid, respectively. Energy, calcium, iron and tocopherol intakes were lower than the Korean RDA in both girls. The mean percentage of fishing girls were 19.8% and significantly lower than 25.6% in urban. These values seem to fall in the desirable range in fishing girls, but high school girls in urban is seemed to overweight. The mean saturated fatty acid(SFA), monounsaturated fatty acid(MUFA), polyunsaturated fatty acid(PUFA) and dietary cholesterol(Chol) intakes were 7.3 g, 8.1 g, 7.2 g and 263 mg for fishing girls were 13.1 g, 12.1 g, 9.1 g and 216 mg for urban girls respectively. The fat, SFA and MUFA intakes in fishing girls were significantly lower than urban girls. The P/M/S ratio was 0.9/1.1/1 for fishing, was 0.7/0.9/1 for urban. The mean serum triglyceride(TG), total cholesterol, HDL cholesterol, LDL-cholesterol concentrations were 77.7(61.8) mg/dl, 124.5(142.3) mg/dl, 59.3(22.4) mg/dl and 49.6(107.8) mg/dl in fishing girls(urban girls), respectively. All of these values seem to fall in the desirable range but HDL-chlesterol concentrations in fishing girls were significantly higher than urban girls and LDL-cholesterol concentrations in fishing girls were significantly lower than urban girls. There were positive correlations between body fat percent and total cholesterol or LDL-cholesterol concentration : negative correlations between between body fat percent and HDL-cholesterol concentration : positive correlation between fat intake and LDL-cholesterol concentration : negative correlations between serum HDL-cholesterol concentration and fat or SFA or MUFA intakes. (Korean J Human 1(1) : 81~93, 1998)

  • PDF

A study of improvement of river water quality(T-P) in pilot-scale operation (파일롯 규모의 운영에 따른 하천수질(T-P) 개선에 관한 연구)

  • Choi, Kyoungsoo;Lee, Chaeyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.5
    • /
    • pp.323-334
    • /
    • 2021
  • Pilot-scale coagulation and sedimentation processes were operated to investigate the T-P (Total phosphorus) removal efficiency. A multiple regression model was also derived to predict the water quality improvement effect with river water characteristics. The inflow rates for the pilot-scale facility were 157-576 m3/day, and the coagulant doses were in the range of 13.7-58.5 mg/L (average 38.9 mg/L) for PAC (Poly alum chloride) and 16.5-62.1 mg/L (average 36.0 mg/L) for alum. The results found that the influent BOD (Biochemical oxygen demand) and T-P concentrations were 4.9 mg/L and 0.115 mg/L, and the removal efficiencies were 52.7% and 59.4%, respectively. T-P removal efficiencies on wet weather days were higher by 10% than dry weather days because influent solids influenced T-P's coagulation process. The pH of river water was 6.9-7.8, and the average pH was 7.3. Although the pH variation was not significant, the trend showed that the treatment efficiency of T-P and PO4-P removal increased. Thus, the pH range considered in this study seems to be appropriate for the coagulation process, which is essential for phosphorous removal. The T-P removal efficiencies were 19.6-93.3% (average 59.2%) for PAC and 16.4-98.5%(average 55.9%) for alum; thus, both coagulants showed similar results. Furthermore, the average coagulant doses were similar at 42.4 mg/L for PAC and 41.3 mg/L for alum. When the T-P concentration of the effluent was compared by the [Al]/[P] ratio, the phosphorus concentration of the treated water decreased with an increasing [Al]/[P] ratio, and the lowest T-P concentration range appeared at the [Al]/[P] ratio of 10-30. A seasonal multiple regression analysis equations were derived from the relationships between 10 independent and dependent variables (T-P concentration of effluent). This study could help lake water quality maintenance, reduce eutrophication, and improve direction settings for urban planning, especially plans related to developing waterfront cities.

Corn Growth and Development influenced by Potential CO2 Leakage from Carbon Capture and Storage (CCS) Site (지중저장 이산화탄소의 잠재적 누출 모사에 따른 옥수수 초기 반응 및 생장 연구)

  • Kim, You Jin;Chen, Xuanlin;He, Wenmei;Yoo, Gayoung
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • Carbon capture and storage (CCS) technology has been suggested as an ultimate strategy for mitigating climate change. However, potential leakage of $CO_2$ from the CCS facilities could lead to serious damage to environment. Plants can be a bio-indicator for $CO_2$ leakage as a cost-effective way, although plants' responses vary with plant species. In this study, a greenhouse experiment was conducted to investigate the relation between the $CO_2$ tolerance of corn species and the initial physiological responses to the elevated soil $CO_2$ concentration. Treatment groups included CI (99.99% $CO_2$ gas injection) and BI (no gas injection). Mean soil $CO_2$ concentration for the CI treatment was 19.5~39.4%, and mean $O_2$ concentration was 6.6~18.4%. The soil gas concentrations in the BI treatment were at the ambient levels. In the CI treatment, chlorophyll content was not decreased until the $13^{th}$ day of the $CO_2$ injection. On the $15^{th}$ day, leaf starch content and stomatal conductance were increased by 89% and 25% in the CI treatment compared to the BI treatment, respectively. This might be due to the compensatory reaction of corn to avoid high soil $CO_2$ stress. However, the prolonged $CO_2$ injection decreased chlorophyll content after 13 days. After $CO_2$ injection, plant biomass was reduced by 25% in the CI treatment compared to the BI treatment. Due to the inhibited root growth, leaf phosphorous and potassium contents were decreased by 54% on average in the CI treatment. This study indicates that corn has a high tolerance to soil $CO_2$ concentration of 30% for 2 weeks by its compensatory reactions such as an maintenance of chlorophyll content and an increase in stomatal conductance.

Development of a new system for measurement of total effluent load of water quality

  • Keiji, Takase;Akira, Ogura
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.221-221
    • /
    • 2015
  • Sustainable use of water resource and conservation of water quality are essential problems in the world. Especially, problems of water quality are serious one for human health as well as ecological system of all creatures on the earth. Recently, the importance of total effluent load as well as the concentrations of pollutant materials has been recognized not only for the conservation of water quality but also for sustainable water use in watersheds. However, the measurement or estimation of total effluent load from non-point source area such as farm lands or forests may be more difficult because both of concentration and discharge of the water are greatly changed depending on various factors especially metrological conditions such as rainfall, while the measurement from a point source area may be easy because the concentration of pollutant materials and amount of discharge water are relatively steady. Therefore, the total effluent load from a non-point source is often estimated by statistical relationships between concentration and discharge, which is called as L-Q equation. However, a lot of work and time are required to collect and analyze water samples and to get the accurate relationship or regressive equation. So, we proposed a new system for direct measurement of total effluent load of water quality from non-point source areas to solve the problem. In this system, the overflow depth at a hydraulic weir is measured with a pressure gage every hourly interval to calculate the amount of hourly discharge at first. Then, the operating time of a small electric pump to collect an amount of water which is proportional to the discharge is calculated to intake the water into a storage tank. The stored water is taken out a few days later in a case of storm event or several weeks later in a case of non-rainfall event and the concentrations of water quality such as total nitrogen and phosphorous are analyzed in a laboratory. Finally, total load of the water quality can be calculated by multiplying the concentration by the total volume of discharge. The system was installed in a small experimental forestry watershed to check the performance and know the total load of water quality from the forest. It was found that the system to collect a proportional amount of water to actual discharge operated perfectly and a total load of water quality was analyzed accurately. As the result, it was expected that the system will be very available to know the total load from a non-point source area.

  • PDF